Properties

Label 178752.ds
Number of curves 11
Conductor 178752178752
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ds1") E.isogeny_class()
 

Elliptic curves in class 178752.ds

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.ds1 178752jy1 [0,1,0,10715,308867][0, -1, 0, 10715, -308867] 70575104/6173170575104/61731 118990281424896-118990281424896 [][] 506880506880 1.38831.3883 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 178752.ds1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
7711
19191T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1T+5T2 1 - T + 5 T^{2} 1.5.ab
1111 15T+11T2 1 - 5 T + 11 T^{2} 1.11.af
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1T+17T2 1 - T + 17 T^{2} 1.17.ab
2323 14T+23T2 1 - 4 T + 23 T^{2} 1.23.ae
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 178752.ds do not have complex multiplication.

Modular form 178752.2.a.ds

Copy content sage:E.q_eigenform(10)
 
qq3+q5+q9+5q112q13q15+q17+q19+O(q20)q - q^{3} + q^{5} + q^{9} + 5 q^{11} - 2 q^{13} - q^{15} + q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display