Properties

Label 178752bq
Number of curves $2$
Conductor $178752$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bq1")
 
E.isogeny_class()
 

Elliptic curves in class 178752bq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
178752.hv2 178752bq1 \([0, 1, 0, 48347, -4318693]\) \(103737344000/127413867\) \(-15349876775611392\) \([2]\) \(1327104\) \(1.7919\) \(\Gamma_0(N)\)-optimal
178752.hv1 178752bq2 \([0, 1, 0, -287793, -41764689]\) \(1367595682000/402300927\) \(775459664046047232\) \([2]\) \(2654208\) \(2.1385\)  

Rank

sage: E.rank()
 

The elliptic curves in class 178752bq have rank \(0\).

Complex multiplication

The elliptic curves in class 178752bq do not have complex multiplication.

Modular form 178752.2.a.bq

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 2 q^{11} + 6 q^{13} + 8 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.