Properties

Label 17a
Number of curves 44
Conductor 1717
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 17a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
17.a3 17a1 [1,1,1,1,14][1, -1, 1, -1, -14] 35937/83521-35937/83521 83521-83521 [4][4] 11 0.37664-0.37664 Γ0(N)\Gamma_0(N)-optimal
17.a2 17a2 [1,1,1,6,4][1, -1, 1, -6, -4] 20346417/28920346417/289 289289 [2,2][2, 2] 22 0.72321-0.72321  
17.a1 17a3 [1,1,1,91,310][1, -1, 1, -91, -310] 82483294977/1782483294977/17 1717 [2][2] 44 0.37664-0.37664  
17.a4 17a4 [1,1,1,1,0][1, -1, 1, -1, 0] 35937/1735937/17 1717 [4][4] 44 1.0698-1.0698  

Rank

sage: E.rank()
 

The elliptic curves in class 17a have rank 00.

Complex multiplication

The elliptic curves in class 17a do not have complex multiplication.

Modular form 17.2.a.a

sage: E.q_eigenform(10)
 
qq2q42q5+4q7+3q83q9+2q102q134q14q16+q17+3q184q19+O(q20)q - q^{2} - q^{4} - 2 q^{5} + 4 q^{7} + 3 q^{8} - 3 q^{9} + 2 q^{10} - 2 q^{13} - 4 q^{14} - q^{16} + q^{17} + 3 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.