Properties

Label 17a2
Conductor 1717
Discriminant 289289
j-invariant 20346417289 \frac{20346417}{289}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x26x4y^2+xy+y=x^3-x^2-6x-4 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z6xz24z3y^2z+xyz+yz^2=x^3-x^2z-6xz^2-4z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x391x330y^2=x^3-91x-330 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -6, -4])
 
gp: E = ellinit([1, -1, 1, -6, -4])
 
magma: E := EllipticCurve([1, -1, 1, -6, -4]);
 
oscar: E = elliptic_curve([1, -1, 1, -6, -4])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,0)(-1, 0)0022
(3,2)(3, -2)0022

Integral points

(1,0) \left(-1, 0\right) , (3,2) \left(3, -2\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  17 17  = 1717
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  289289 = 17217^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  20346417289 \frac{20346417}{289}  = 33731331723^{3} \cdot 7^{3} \cdot 13^{3} \cdot 17^{-2}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.72320971122131613566604906496-0.72320971122131613566604906496
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.72320971122131613566604906496-0.72320971122131613566604906496
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.02962855594931211.0296285559493121
Szpiro ratio: σm\sigma_{m} ≈ 5.939692265271565.93969226527156

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.09415950710224034641915800993.0941595071022403464191580099
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 2 2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.386769938387780043302394751240.38676993838778004330239475124
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.386769938L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.0941601.0000002420.386769938\displaystyle 0.386769938 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.094160 \cdot 1.000000 \cdot 2}{4^2} \approx 0.386769938

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   17.2.a.a

qq2q42q5+4q7+3q83q9+2q102q134q14q16+q17+3q184q19+O(q20) q - q^{2} - q^{4} - 2 q^{5} + 4 q^{7} + 3 q^{8} - 3 q^{9} + 2 q^{10} - 2 q^{13} - 4 q^{14} - q^{16} + q^{17} + 3 q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 2
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There is only one prime pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1717 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 16.96.0.13

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 32, 1], [1, 32, 0, 1], [513, 32, 512, 33], [349, 84, 248, 169], [9, 32, 488, 345], [511, 134, 272, 1], [29, 8, 444, 85], [141, 24, 266, 373]]
 
GL(2,Integers(544)).subgroup(gens)
 
Gens := [[1, 0, 32, 1], [1, 32, 0, 1], [513, 32, 512, 33], [349, 84, 248, 169], [9, 32, 488, 345], [511, 134, 272, 1], [29, 8, 444, 85], [141, 24, 266, 373]];
 
sub<GL(2,Integers(544))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 544=2517 544 = 2^{5} \cdot 17 , index 15361536, genus 5353, and generators

(10321),(13201),(5133251233),(34984248169),(932488345),(5111342721),(29844485),(14124266373)\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 513 & 32 \\ 512 & 33 \end{array}\right),\left(\begin{array}{rr} 349 & 84 \\ 248 & 169 \end{array}\right),\left(\begin{array}{rr} 9 & 32 \\ 488 & 345 \end{array}\right),\left(\begin{array}{rr} 511 & 134 \\ 272 & 1 \end{array}\right),\left(\begin{array}{rr} 29 & 8 \\ 444 & 85 \end{array}\right),\left(\begin{array}{rr} 141 & 24 \\ 266 & 373 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[544])K:=\Q(E[544]) is a degree-2005401620054016 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/544Z)\GL_2(\Z/544\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 1 1
1717 split multiplicative 1818 1 1

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 17a consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(1)\Q(\sqrt{-1}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z 2.0.4.1-289.2-a5
22 Q(17)\Q(\sqrt{17}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z 2.2.17.1-17.1-a5
44 Q(i,17)\Q(i, \sqrt{17}) Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.18939904.4 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.4.386201104.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.2.182660427.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 16.0.38182730939089616896.1 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 16.0.29960650073923649536.2 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 17
Reduction type ord split
λ\lambda-invariant(s) 0 1
μ\mu-invariant(s) 1 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p3p\ge 3 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.