Properties

Label 1800h
Number of curves 44
Conductor 18001800
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 1800h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1800.c4 1800h1 [0,0,0,825,4250][0, 0, 0, 825, 4250] 21296/1521296/15 43740000000-43740000000 [2][2] 15361536 0.730280.73028 Γ0(N)\Gamma_0(N)-optimal
1800.c3 1800h2 [0,0,0,3675,35750][0, 0, 0, -3675, 35750] 470596/225470596/225 26244000000002624400000000 [2,2][2, 2] 30723072 1.07691.0769  
1800.c2 1800h3 [0,0,0,30675,2043250][0, 0, 0, -30675, -2043250] 136835858/1875136835858/1875 4374000000000043740000000000 [2][2] 61446144 1.42341.4234  
1800.c1 1800h4 [0,0,0,48675,4130750][0, 0, 0, -48675, 4130750] 546718898/405546718898/405 94478400000009447840000000 [2][2] 61446144 1.42341.4234  

Rank

sage: E.rank()
 

The elliptic curves in class 1800h have rank 00.

Complex multiplication

The elliptic curves in class 1800h do not have complex multiplication.

Modular form 1800.2.a.h

sage: E.q_eigenform(10)
 
q4q7+6q132q17+4q19+O(q20)q - 4 q^{7} + 6 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.