Properties

Label 1800h
Number of curves $4$
Conductor $1800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 1800h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1800.c4 1800h1 \([0, 0, 0, 825, 4250]\) \(21296/15\) \(-43740000000\) \([2]\) \(1536\) \(0.73028\) \(\Gamma_0(N)\)-optimal
1800.c3 1800h2 \([0, 0, 0, -3675, 35750]\) \(470596/225\) \(2624400000000\) \([2, 2]\) \(3072\) \(1.0769\)  
1800.c2 1800h3 \([0, 0, 0, -30675, -2043250]\) \(136835858/1875\) \(43740000000000\) \([2]\) \(6144\) \(1.4234\)  
1800.c1 1800h4 \([0, 0, 0, -48675, 4130750]\) \(546718898/405\) \(9447840000000\) \([2]\) \(6144\) \(1.4234\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1800h have rank \(0\).

Complex multiplication

The elliptic curves in class 1800h do not have complex multiplication.

Modular form 1800.2.a.h

sage: E.q_eigenform(10)
 
\(q - 4 q^{7} + 6 q^{13} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.