Properties

Label 180336.cy
Number of curves $2$
Conductor $180336$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cy1")
 
E.isogeny_class()
 

Elliptic curves in class 180336.cy

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
180336.cy1 180336v1 \([0, 1, 0, -361057, -83623702]\) \(13478411517952/304317\) \(117527561365968\) \([2]\) \(1105920\) \(1.8139\) \(\Gamma_0(N)\)-optimal
180336.cy2 180336v2 \([0, 1, 0, -348052, -89912920]\) \(-754612278352/127035441\) \(-784979640981229824\) \([2]\) \(2211840\) \(2.1605\)  

Rank

sage: E.rank()
 

The elliptic curves in class 180336.cy have rank \(1\).

Complex multiplication

The elliptic curves in class 180336.cy do not have complex multiplication.

Modular form 180336.2.a.cy

sage: E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{5} + 2 q^{7} + q^{9} - 2 q^{11} - q^{13} + 2 q^{15} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.