sage:E = EllipticCurve("bz1")
E.isogeny_class()
Elliptic curves in class 180336bz
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
180336.bz3 |
180336bz1 |
[0,1,0,−2119,−22360] |
2725888/1053 |
406669762512 |
[2] |
163840 |
0.92659
|
Γ0(N)-optimal |
180336.bz2 |
180336bz2 |
[0,1,0,−15124,695516] |
61918288/1521 |
9398590066944 |
[2,2] |
327680 |
1.2732
|
|
180336.bz1 |
180336bz3 |
[0,1,0,−240544,45328676] |
62275269892/39 |
963957955584 |
[2] |
655360 |
1.6197
|
|
180336.bz4 |
180336bz4 |
[0,1,0,2216,2214500] |
48668/85683 |
−2117815628418048 |
[2] |
655360 |
1.6197
|
|
sage:E.rank()
The elliptic curves in class 180336bz have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
13 | 1−T |
17 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1+7T2 |
1.7.a
|
11 |
1+11T2 |
1.11.a
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 180336bz do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.