Properties

Label 180336bz
Number of curves $4$
Conductor $180336$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bz1")
 
E.isogeny_class()
 

Elliptic curves in class 180336bz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
180336.bz3 180336bz1 \([0, 1, 0, -2119, -22360]\) \(2725888/1053\) \(406669762512\) \([2]\) \(163840\) \(0.92659\) \(\Gamma_0(N)\)-optimal
180336.bz2 180336bz2 \([0, 1, 0, -15124, 695516]\) \(61918288/1521\) \(9398590066944\) \([2, 2]\) \(327680\) \(1.2732\)  
180336.bz1 180336bz3 \([0, 1, 0, -240544, 45328676]\) \(62275269892/39\) \(963957955584\) \([2]\) \(655360\) \(1.6197\)  
180336.bz4 180336bz4 \([0, 1, 0, 2216, 2214500]\) \(48668/85683\) \(-2117815628418048\) \([2]\) \(655360\) \(1.6197\)  

Rank

sage: E.rank()
 

The elliptic curves in class 180336bz have rank \(1\).

Complex multiplication

The elliptic curves in class 180336bz do not have complex multiplication.

Modular form 180336.2.a.bz

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} + q^{13} - 2 q^{15} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.