Properties

Label 181300.x
Number of curves 22
Conductor 181300181300
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 181300.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
181300.x1 181300y2 [0,1,0,14726133,21746175863][0, 1, 0, -14726133, 21746175863] 750484394082304/578125750484394082304/578125 272063312500000000272063312500000000 [][] 39191043919104 2.65332.6533  
181300.x2 181300y1 [0,1,0,222133,15557863][0, 1, 0, -222133, 15557863] 2575826944/12663252575826944/1266325 595927479700000000595927479700000000 [][] 13063681306368 2.10402.1040 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 181300.x have rank 11.

Complex multiplication

The elliptic curves in class 181300.x do not have complex multiplication.

Modular form 181300.2.a.x

sage: E.q_eigenform(10)
 
q+q32q93q114q13+4q19+O(q20)q + q^{3} - 2 q^{9} - 3 q^{11} - 4 q^{13} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.