Properties

Label 181300.x
Number of curves $2$
Conductor $181300$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("x1")
 
E.isogeny_class()
 

Elliptic curves in class 181300.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
181300.x1 181300y2 \([0, 1, 0, -14726133, 21746175863]\) \(750484394082304/578125\) \(272063312500000000\) \([]\) \(3919104\) \(2.6533\)  
181300.x2 181300y1 \([0, 1, 0, -222133, 15557863]\) \(2575826944/1266325\) \(595927479700000000\) \([]\) \(1306368\) \(2.1040\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 181300.x have rank \(1\).

Complex multiplication

The elliptic curves in class 181300.x do not have complex multiplication.

Modular form 181300.2.a.x

sage: E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{9} - 3 q^{11} - 4 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.