Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 18130l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
18130.l1 | 18130l1 | \([1, 1, 0, -2622, -52786]\) | \(-16954786009/370\) | \(-43530130\) | \([]\) | \(13608\) | \(0.58174\) | \(\Gamma_0(N)\)-optimal |
18130.l2 | 18130l2 | \([1, 1, 0, -907, -118299]\) | \(-702595369/50653000\) | \(-5959274797000\) | \([]\) | \(40824\) | \(1.1310\) | |
18130.l3 | 18130l3 | \([1, 1, 0, 8158, 3165044]\) | \(510273943271/37000000000\) | \(-4353013000000000\) | \([]\) | \(122472\) | \(1.6804\) |
Rank
sage: E.rank()
The elliptic curves in class 18130l have rank \(0\).
Complex multiplication
The elliptic curves in class 18130l do not have complex multiplication.Modular form 18130.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.