Properties

Label 18130l
Number of curves $3$
Conductor $18130$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 18130l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18130.l1 18130l1 \([1, 1, 0, -2622, -52786]\) \(-16954786009/370\) \(-43530130\) \([]\) \(13608\) \(0.58174\) \(\Gamma_0(N)\)-optimal
18130.l2 18130l2 \([1, 1, 0, -907, -118299]\) \(-702595369/50653000\) \(-5959274797000\) \([]\) \(40824\) \(1.1310\)  
18130.l3 18130l3 \([1, 1, 0, 8158, 3165044]\) \(510273943271/37000000000\) \(-4353013000000000\) \([]\) \(122472\) \(1.6804\)  

Rank

sage: E.rank()
 

The elliptic curves in class 18130l have rank \(0\).

Complex multiplication

The elliptic curves in class 18130l do not have complex multiplication.

Modular form 18130.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{2} + 2 q^{3} + q^{4} + q^{5} - 2 q^{6} - q^{8} + q^{9} - q^{10} + 3 q^{11} + 2 q^{12} + 4 q^{13} + 2 q^{15} + q^{16} - 3 q^{17} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.