Properties

Label 1815a
Number of curves 88
Conductor 18151815
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 1815a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1815.d7 1815a1 [1,1,0,2,249][1, 1, 0, -2, -249] 1/15-1/15 26573415-26573415 [2][2] 320320 0.103520.10352 Γ0(N)\Gamma_0(N)-optimal
1815.d6 1815a2 [1,1,0,607,5936][1, 1, 0, -607, -5936] 13997521/22513997521/225 398601225398601225 [2,2][2, 2] 640640 0.450100.45010  
1815.d4 1815a3 [1,1,0,9682,370751][1, 1, 0, -9682, -370751] 56667352321/1556667352321/15 2657341526573415 [2][2] 12801280 0.796670.79667  
1815.d5 1815a4 [1,1,0,1212,7011][1, 1, 0, -1212, 7011] 111284641/50625111284641/50625 8968527562589685275625 [2,2][2, 2] 12801280 0.796670.79667  
1815.d2 1815a5 [1,1,0,16337,796536][1, 1, 0, -16337, 796536] 272223782641/164025272223782641/164025 290580293025290580293025 [2,2][2, 2] 25602560 1.14321.1432  
1815.d8 1815a6 [1,1,0,4233,58194][1, 1, 0, 4233, 58194] 4733169839/35156254733169839/3515625 6228144140625-6228144140625 [2][2] 25602560 1.14321.1432  
1815.d1 1815a7 [1,1,0,261362,51320691][1, 1, 0, -261362, 51320691] 1114544804970241/4051114544804970241/405 717482205717482205 [2][2] 51205120 1.48981.4898  
1815.d3 1815a8 [1,1,0,13312,1104481][1, 1, 0, -13312, 1104481] 147281603041/215233605-147281603041/215233605 381299460507405-381299460507405 [2][2] 51205120 1.48981.4898  

Rank

sage: E.rank()
 

The elliptic curves in class 1815a have rank 11.

Complex multiplication

The elliptic curves in class 1815a do not have complex multiplication.

Modular form 1815.2.a.a

sage: E.q_eigenform(10)
 
q+q2q3q4+q5q63q8+q9+q10+q12+2q13q15q162q17+q184q19+O(q20)q + q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 3 q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} - q^{15} - q^{16} - 2 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488161621224488421488161642412244848214228482418816816428141681642841)\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.