Properties

Label 182070cj1
Conductor 182070182070
Discriminant 1.635×1019-1.635\times 10^{19}
j-invariant 1023887723039928972800 \frac{1023887723039}{928972800}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x2+546156x117201200y^2+xy=x^3-x^2+546156x-117201200 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z+546156xz2117201200z3y^2z+xyz=x^3-x^2z+546156xz^2-117201200z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+8738493x7492138306y^2=x^3+8738493x-7492138306 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, -1, 0, 546156, -117201200])
 
Copy content gp:E = ellinit([1, -1, 0, 546156, -117201200])
 
Copy content magma:E := EllipticCurve([1, -1, 0, 546156, -117201200]);
 
Copy content oscar:E = elliptic_curve([1, -1, 0, 546156, -117201200])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(489,16084)(489, 16084)4.10343856947226825241967346454.1034385694722682524196734645\infty
(1721,76067)(1721, 76067)5.76807244924004337766200397125.7680724492400433776620039712\infty
(200,100)(200, -100)0022

Integral points

(200,100) \left(200, -100\right) , (489,16084) \left(489, 16084\right) , (489,16573) \left(489, -16573\right) , (1721,76067) \left(1721, 76067\right) , (1721,77788) \left(1721, -77788\right) , (2504,128924) \left(2504, 128924\right) , (2504,131428) \left(2504, -131428\right) , (65736,16822172) \left(65736, 16822172\right) , (65736,16887908) \left(65736, -16887908\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  182070 182070  = 232571722 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  16346472748100812800-16346472748100812800 = 1216310527176-1 \cdot 2^{16} \cdot 3^{10} \cdot 5^{2} \cdot 7 \cdot 17^{6}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  1023887723039928972800 \frac{1023887723039}{928972800}  = 2163452711007932^{-16} \cdot 3^{-4} \cdot 5^{-2} \cdot 7^{-1} \cdot 10079^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.37404787213783531394096393192.3740478721378353139409639319
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.408135055775672428118574004500.40813505577567242811857400450
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.9998100380714460.999810038071446
Szpiro ratio: σm\sigma_{m} ≈ 4.2309248617234834.230924861723483

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 22.28814259311730125814503302822.288142593117301258145033028
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.120676942622924828108511489810.12067694262292482810851148981
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 22212 2\cdot2\cdot2\cdot1\cdot2
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 10.75865961952473422720513442510.758659619524734227205134425
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

10.758659620L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.12067722.288143162210.758659620\begin{aligned} 10.758659620 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.120677 \cdot 22.288143 \cdot 16}{2^2} \\ & \approx 10.758659620\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, -1, 0, 546156, -117201200]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, -1, 0, 546156, -117201200]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 182070.2.a.bi

qq2+q4+q5+q7q8q104q112q13q14+q16+4q19+O(q20) q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - q^{10} - 4 q^{11} - 2 q^{13} - q^{14} + q^{16} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5242880
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I16I_{16} nonsplit multiplicative 1 1 16 16
33 22 I4I_{4}^{*} additive -1 2 10 4
55 22 I2I_{2} split multiplicative -1 1 2 2
77 11 I1I_{1} split multiplicative -1 1 1 1
1717 22 I0I_0^{*} additive 1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.96

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[1, 0, 32, 1], [55863, 20162, 29002, 26895], [1, 32, 0, 1], [5, 28, 68, 381], [20159, 0, 0, 57119], [23, 18, 54558, 55115], [48961, 36992, 11594, 20639], [16151, 33626, 45798, 14315], [51392, 6749, 4267, 56322], [57089, 32, 57088, 33], [44777, 23494, 52938, 29749]] GL(2,Integers(57120)).subgroup(gens)
 
Copy content magma:Gens := [[1, 0, 32, 1], [55863, 20162, 29002, 26895], [1, 32, 0, 1], [5, 28, 68, 381], [20159, 0, 0, 57119], [23, 18, 54558, 55115], [48961, 36992, 11594, 20639], [16151, 33626, 45798, 14315], [51392, 6749, 4267, 56322], [57089, 32, 57088, 33], [44777, 23494, 52938, 29749]]; sub<GL(2,Integers(57120))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 57120=2535717 57120 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 17 , index 768768, genus 1313, and generators

(10321),(55863201622900226895),(13201),(52868381),(201590057119),(23185455855115),(48961369921159420639),(16151336264579814315),(513926749426756322),(57089325708833),(44777234945293829749)\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 55863 & 20162 \\ 29002 & 26895 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 20159 & 0 \\ 0 & 57119 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 54558 & 55115 \end{array}\right),\left(\begin{array}{rr} 48961 & 36992 \\ 11594 & 20639 \end{array}\right),\left(\begin{array}{rr} 16151 & 33626 \\ 45798 & 14315 \end{array}\right),\left(\begin{array}{rr} 51392 & 6749 \\ 4267 & 56322 \end{array}\right),\left(\begin{array}{rr} 57089 & 32 \\ 57088 & 33 \end{array}\right),\left(\begin{array}{rr} 44777 & 23494 \\ 52938 & 29749 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[57120])K:=\Q(E[57120]) is a degree-18629635394764801862963539476480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/57120Z)\GL_2(\Z/57120\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 18207=327172 18207 = 3^{2} \cdot 7 \cdot 17^{2}
33 additive 88 20230=257172 20230 = 2 \cdot 5 \cdot 7 \cdot 17^{2}
55 split multiplicative 66 36414=2327172 36414 = 2 \cdot 3^{2} \cdot 7 \cdot 17^{2}
77 split multiplicative 88 26010=2325172 26010 = 2 \cdot 3^{2} \cdot 5 \cdot 17^{2}
1717 additive 146146 630=23257 630 = 2 \cdot 3^{2} \cdot 5 \cdot 7

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4, 8 and 16.
Its isogeny class 182070cj consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 210e1, its twist by 51-51.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{-7}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(357)\Q(\sqrt{357}) Z/4Z\Z/4\Z not in database
22 Q(51)\Q(\sqrt{-51}) Z/8Z\Z/8\Z not in database
44 Q(7,51)\Q(\sqrt{-7}, \sqrt{-51}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
44 Q(15,51)\Q(\sqrt{-15}, \sqrt{-51}) Z/16Z\Z/16\Z not in database
44 Q(51,105)\Q(\sqrt{-51}, \sqrt{105}) Z/16Z\Z/16\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/8Z\Z/8\Z not in database
88 8.0.10152029750625.4 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/32Z\Z/32\Z not in database
1616 deg 16 Z/32Z\Z/32\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.