y2+xy=x3−x2+546156x−117201200
|
(homogenize, simplify) |
y2z+xyz=x3−x2z+546156xz2−117201200z3
|
(dehomogenize, simplify) |
y2=x3+8738493x−7492138306
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, -1, 0, 546156, -117201200])
gp:E = ellinit([1, -1, 0, 546156, -117201200])
magma:E := EllipticCurve([1, -1, 0, 546156, -117201200]);
oscar:E = elliptic_curve([1, -1, 0, 546156, -117201200])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z⊕Z⊕Z/2Z
magma:MordellWeilGroup(E);
P | h^(P) | Order |
(489,16084) | 4.1034385694722682524196734645 | ∞ |
(1721,76067) | 5.7680724492400433776620039712 | ∞ |
(200,−100) | 0 | 2 |
(200,−100), (489,16084), (489,−16573), (1721,76067), (1721,−77788), (2504,128924), (2504,−131428), (65736,16822172), (65736,−16887908)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
Conductor: |
N |
= |
182070 | = | 2⋅32⋅5⋅7⋅172 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
Discriminant: |
Δ |
= |
−16346472748100812800 | = | −1⋅216⋅310⋅52⋅7⋅176 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
j-invariant: |
j |
= |
9289728001023887723039 | = | 2−16⋅3−4⋅5−2⋅7−1⋅100793 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 2.3740478721378353139409639319 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 0.40813505577567242811857400450 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 0.999810038071446 |
|
Szpiro ratio: |
σm | ≈ | 4.230924861723483 |
|
Analytic rank: |
ran | = | 2
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
Mordell-Weil rank: |
r | = | 2
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
Regulator: |
Reg(E/Q) | ≈ | 22.288142593117301258145033028 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
Real period: |
Ω | ≈ | 0.12067694262292482810851148981 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 16
= 2⋅2⋅2⋅1⋅2
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 2 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
Special value: |
L(2)(E,1)/2! | ≈ | 10.758659619524734227205134425 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
10.758659620≈L(2)(E,1)/2!=?#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈221⋅0.120677⋅22.288143⋅16≈10.758659620
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 0, 546156, -117201200]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 0, 546156, -117201200]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
182070.2.a.bi
q−q2+q4+q5+q7−q8−q10−4q11−2q13−q14+q16+4q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 5 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[1, 0, 32, 1], [55863, 20162, 29002, 26895], [1, 32, 0, 1], [5, 28, 68, 381], [20159, 0, 0, 57119], [23, 18, 54558, 55115], [48961, 36992, 11594, 20639], [16151, 33626, 45798, 14315], [51392, 6749, 4267, 56322], [57089, 32, 57088, 33], [44777, 23494, 52938, 29749]]
GL(2,Integers(57120)).subgroup(gens)
magma:Gens := [[1, 0, 32, 1], [55863, 20162, 29002, 26895], [1, 32, 0, 1], [5, 28, 68, 381], [20159, 0, 0, 57119], [23, 18, 54558, 55115], [48961, 36992, 11594, 20639], [16151, 33626, 45798, 14315], [51392, 6749, 4267, 56322], [57089, 32, 57088, 33], [44777, 23494, 52938, 29749]];
sub<GL(2,Integers(57120))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 57120=25⋅3⋅5⋅7⋅17, index 768, genus 13, and generators
(13201),(55863290022016226895),(10321),(56828381),(201590057119),(23545581855115),(48961115943699220639),(16151457983362614315),(513924267674956322),(57089570883233),(44777529382349429749).
The torsion field K:=Q(E[57120]) is a degree-1862963539476480 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/57120Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
nonsplit multiplicative |
4 |
18207=32⋅7⋅172 |
3 |
additive |
8 |
20230=2⋅5⋅7⋅172 |
5 |
split multiplicative |
6 |
36414=2⋅32⋅7⋅172 |
7 |
split multiplicative |
8 |
26010=2⋅32⋅5⋅172 |
17 |
additive |
146 |
630=2⋅32⋅5⋅7 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
2, 4, 8 and 16.
Its isogeny class 182070cj
consists of 8 curves linked by isogenies of
degrees dividing 16.
The minimal quadratic twist of this elliptic curve is
210e1, its twist by −51.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
≅Z/2Z
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.