Properties

Label 182b
Number of curves 33
Conductor 182182
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 182b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
182.d3 182b1 [1,0,0,7,7][1, 0, 0, 7, -7] 37595375/4659237595375/46592 46592-46592 [3][3] 1212 0.41816-0.41816 Γ0(N)\Gamma_0(N)-optimal
182.d2 182b2 [1,0,0,193,1055][1, 0, 0, -193, -1055] 795309684625/6028568-795309684625/6028568 6028568-6028568 [3][3] 3636 0.131150.13115  
182.d1 182b3 [1,0,0,15663,755809][1, 0, 0, -15663, -755809] 424962187484640625/182-424962187484640625/182 182-182 [][] 108108 0.680460.68046  

Rank

sage: E.rank()
 

The elliptic curves in class 182b have rank 00.

Complex multiplication

The elliptic curves in class 182b do not have complex multiplication.

Modular form 182.2.a.b

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q6+q7+q82q93q11+q12+q13+q14+q162q18+2q19+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} + q^{7} + q^{8} - 2 q^{9} - 3 q^{11} + q^{12} + q^{13} + q^{14} + q^{16} - 2 q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.