Properties

Label 182c1
Conductor 182182
Discriminant 21926008832-21926008832
j-invariant 1082451327663232921926008832 -\frac{10824513276632329}{21926008832}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x34609x+120244y^2+xy+y=x^3-4609x+120244 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x34609xz2+120244z3y^2z+xyz+yz^2=x^3-4609xz^2+120244z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x35972643x+5628033630y^2=x^3-5972643x+5628033630 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -4609, 120244])
 
gp: E = ellinit([1, 0, 1, -4609, 120244])
 
magma: E := EllipticCurve([1, 0, 1, -4609, 120244]);
 
oscar: E = elliptic_curve([1, 0, 1, -4609, 120244])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  182 182  = 27132 \cdot 7 \cdot 13
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  21926008832-21926008832 = 12117713-1 \cdot 2^{11} \cdot 7^{7} \cdot 13
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1082451327663232921926008832 -\frac{10824513276632329}{21926008832}  = 1211771312212093-1 \cdot 2^{-11} \cdot 7^{-7} \cdot 13^{-1} \cdot 221209^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.871166942153429250853770350150.87116694215342925085377035015
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.871166942153429250853770350150.87116694215342925085377035015
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.99602281510866090.9960228151086609
Szpiro ratio: σm\sigma_{m} ≈ 7.0953182865591997.095318286559199

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.20897563493611832493621855591.2089756349361183249362185559
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.20897563493611832493621855591.2089756349361183249362185559
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.208975635L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.2089761.0000001121.208975635\displaystyle 1.208975635 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.208976 \cdot 1.000000 \cdot 1}{1^2} \approx 1.208975635

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   182.2.a.a

qq2+q3+q4+4q5q6q7q82q94q10q11+q12+q13+q14+4q15+q16+4q17+2q18+2q19+O(q20) q - q^{2} + q^{3} + q^{4} + 4 q^{5} - q^{6} - q^{7} - q^{8} - 2 q^{9} - 4 q^{10} - q^{11} + q^{12} + q^{13} + q^{14} + 4 q^{15} + q^{16} + 4 q^{17} + 2 q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 308
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I11I_{11} nonsplit multiplicative 1 1 11 11
77 11 I7I_{7} nonsplit multiplicative 1 1 7 7
1313 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[183, 2, 0, 1], [561, 2, 561, 3], [521, 2, 521, 3], [1, 0, 2, 1], [1, 2, 0, 1], [727, 2, 726, 3], [1, 1, 727, 0], [365, 2, 365, 3]]
 
GL(2,Integers(728)).subgroup(gens)
 
Gens := [[183, 2, 0, 1], [561, 2, 561, 3], [521, 2, 521, 3], [1, 0, 2, 1], [1, 2, 0, 1], [727, 2, 726, 3], [1, 1, 727, 0], [365, 2, 365, 3]];
 
sub<GL(2,Integers(728))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 728=23713 728 = 2^{3} \cdot 7 \cdot 13 , index 22, genus 00, and generators

(183201),(56125613),(52125213),(1021),(1201),(72727263),(117270),(36523653)\left(\begin{array}{rr} 183 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 561 & 2 \\ 561 & 3 \end{array}\right),\left(\begin{array}{rr} 521 & 2 \\ 521 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 727 & 2 \\ 726 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 727 & 0 \end{array}\right),\left(\begin{array}{rr} 365 & 2 \\ 365 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[728])K:=\Q(E[728]) is a degree-4057753190440577531904 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/728Z)\GL_2(\Z/728\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 91=713 91 = 7 \cdot 13
77 nonsplit multiplicative 88 26=213 26 = 2 \cdot 13
1111 good 22 91=713 91 = 7 \cdot 13
1313 split multiplicative 1414 14=27 14 = 2 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 182c consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.728.1 Z/2Z\Z/2\Z not in database
66 6.0.385828352.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.2399575035312.10 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ord ord nonsplit ord split ord ord ord ord ord ord ord ord ord
λ\lambda-invariant(s) 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.