sage:E = EllipticCurve("r1")
E.isogeny_class()
Elliptic curves in class 18400.r
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
18400.r1 |
18400q1 |
[0,−1,0,2467,−11867563] |
25934336/950546875 |
−60835000000000000 |
[] |
96768 |
1.8995
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 18400.r1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
23 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−2T+3T2 |
1.3.ac
|
7 |
1+T+7T2 |
1.7.b
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1+13T2 |
1.13.a
|
17 |
1−T+17T2 |
1.17.ab
|
19 |
1+4T+19T2 |
1.19.e
|
29 |
1+5T+29T2 |
1.29.f
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 18400.r do not have complex multiplication.
sage:E.q_eigenform(10)