Properties

Label 18400.r
Number of curves 11
Conductor 1840018400
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Elliptic curves in class 18400.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
18400.r1 18400q1 [0,1,0,2467,11867563][0, -1, 0, 2467, -11867563] 25934336/95054687525934336/950546875 60835000000000000-60835000000000000 [][] 9676896768 1.89951.8995 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 18400.r1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
23231T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 1T+17T2 1 - T + 17 T^{2} 1.17.ab
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2929 1+5T+29T2 1 + 5 T + 29 T^{2} 1.29.f
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 18400.r do not have complex multiplication.

Modular form 18400.2.a.r

Copy content sage:E.q_eigenform(10)
 
q+2q3q7+q9+2q11+q174q19+O(q20)q + 2 q^{3} - q^{7} + q^{9} + 2 q^{11} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display