Properties

Label 1850f
Number of curves 22
Conductor 18501850
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 1850f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1850.e2 1850f1 [1,1,0,857,9299][1, -1, 0, -857, -9299] 557238592989/9699328557238592989/9699328 12124160001212416000 [2][2] 864864 0.539750.53975 Γ0(N)\Gamma_0(N)-optimal
1850.e1 1850f2 [1,1,0,13657,610899][1, -1, 0, -13657, -610899] 2253707317528029/7009282253707317528029/700928 8761600087616000 [2][2] 17281728 0.886320.88632  

Rank

sage: E.rank()
 

The elliptic curves in class 1850f have rank 11.

Complex multiplication

The elliptic curves in class 1850f do not have complex multiplication.

Modular form 1850.2.a.f

sage: E.q_eigenform(10)
 
qq2+q4+2q7q83q92q132q14+q16+6q17+3q186q19+O(q20)q - q^{2} + q^{4} + 2 q^{7} - q^{8} - 3 q^{9} - 2 q^{13} - 2 q^{14} + q^{16} + 6 q^{17} + 3 q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.