Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 1850f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1850.e2 | 1850f1 | \([1, -1, 0, -857, -9299]\) | \(557238592989/9699328\) | \(1212416000\) | \([2]\) | \(864\) | \(0.53975\) | \(\Gamma_0(N)\)-optimal |
1850.e1 | 1850f2 | \([1, -1, 0, -13657, -610899]\) | \(2253707317528029/700928\) | \(87616000\) | \([2]\) | \(1728\) | \(0.88632\) |
Rank
sage: E.rank()
The elliptic curves in class 1850f have rank \(1\).
Complex multiplication
The elliptic curves in class 1850f do not have complex multiplication.Modular form 1850.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.