Properties

Label 1872.c
Number of curves 44
Conductor 18721872
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Elliptic curves in class 1872.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1872.c1 1872r4 [0,0,0,2986491,1986506026][0, 0, 0, -2986491, 1986506026] 986551739719628473/111045168986551739719628473/111045168 331579094925312331579094925312 [4][4] 3072030720 2.21052.2105  
1872.c2 1872r3 [0,0,0,336891,25526486][0, 0, 0, -336891, -25526486] 1416134368422073/7252511554081416134368422073/725251155408 21655883460298014722165588346029801472 [2][2] 3072030720 2.21052.2105  
1872.c3 1872r2 [0,0,0,187131,30873130][0, 0, 0, -187131, 30873130] 242702053576633/2554695936242702053576633/2554695936 76282811897610247628281189761024 [2,2][2, 2] 1536015360 1.86401.8640  
1872.c4 1872r1 [0,0,0,2811,1197610][0, 0, 0, -2811, 1197610] 822656953/207028224-822656953/207028224 618182964412416-618182964412416 [2][2] 76807680 1.51741.5174 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1872.c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
13131T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 18T+19T2 1 - 8 T + 19 T^{2} 1.19.ai
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1872.c do not have complex multiplication.

Modular form 1872.2.a.c

Copy content sage:E.q_eigenform(10)
 
q2q54q74q11+q132q17+8q19+O(q20)q - 2 q^{5} - 4 q^{7} - 4 q^{11} + q^{13} - 2 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.