sage:E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1872.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1872.c1 |
1872r4 |
[0,0,0,−2986491,1986506026] |
986551739719628473/111045168 |
331579094925312 |
[4] |
30720 |
2.2105
|
|
1872.c2 |
1872r3 |
[0,0,0,−336891,−25526486] |
1416134368422073/725251155408 |
2165588346029801472 |
[2] |
30720 |
2.2105
|
|
1872.c3 |
1872r2 |
[0,0,0,−187131,30873130] |
242702053576633/2554695936 |
7628281189761024 |
[2,2] |
15360 |
1.8640
|
|
1872.c4 |
1872r1 |
[0,0,0,−2811,1197610] |
−822656953/207028224 |
−618182964412416 |
[2] |
7680 |
1.5174
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 1872.c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
13 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+4T+11T2 |
1.11.e
|
17 |
1+2T+17T2 |
1.17.c
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1872.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.