Properties

Label 187200.in
Number of curves $4$
Conductor $187200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("in1")
 
E.isogeny_class()
 

Elliptic curves in class 187200.in

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.in1 187200mi3 \([0, 0, 0, -749100, 249550000]\) \(62275269892/39\) \(29113344000000\) \([2]\) \(1048576\) \(1.9037\)  
187200.in2 187200mi2 \([0, 0, 0, -47100, 3850000]\) \(61918288/1521\) \(283855104000000\) \([2, 2]\) \(524288\) \(1.5571\)  
187200.in3 187200mi1 \([0, 0, 0, -6600, -119000]\) \(2725888/1053\) \(12282192000000\) \([2]\) \(262144\) \(1.2106\) \(\Gamma_0(N)\)-optimal
187200.in4 187200mi4 \([0, 0, 0, 6900, 12166000]\) \(48668/85683\) \(-63962016768000000\) \([2]\) \(1048576\) \(1.9037\)  

Rank

sage: E.rank()
 

The elliptic curves in class 187200.in have rank \(1\).

Complex multiplication

The elliptic curves in class 187200.in do not have complex multiplication.

Modular form 187200.2.a.in

sage: E.q_eigenform(10)
 
\(q + q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.