Properties

Label 187200io
Number of curves $2$
Conductor $187200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("io1")
 
E.isogeny_class()
 

Elliptic curves in class 187200io

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
187200.y2 187200io1 \([0, 0, 0, 172500, 594110000]\) \(7604375/2047032\) \(-152810119987200000000\) \([]\) \(4976640\) \(2.5522\) \(\Gamma_0(N)\)-optimal
187200.y1 187200io2 \([0, 0, 0, -48427500, 129734030000]\) \(-168256703745625/30371328\) \(-2267207486668800000000\) \([]\) \(14929920\) \(3.1015\)  

Rank

sage: E.rank()
 

The elliptic curves in class 187200io have rank \(1\).

Complex multiplication

The elliptic curves in class 187200io do not have complex multiplication.

Modular form 187200.2.a.io

sage: E.q_eigenform(10)
 
\(q - 4 q^{7} - q^{13} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.