Properties

Label 18745a1
Conductor 1874518745
Discriminant 2155675-2155675
j-invariant 3465401098242155675 -\frac{346540109824}{2155675}
CM no
Rank 33
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2146x+636y^2+y=x^3+x^2-146x+636 Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z146xz2+636z3y^2z+yz^2=x^3+x^2z-146xz^2+636z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3189648x+31958928y^2=x^3-189648x+31958928 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 1, -146, 636])
 
gp: E = ellinit([0, 1, 1, -146, 636])
 
magma: E := EllipticCurve([0, 1, 1, -146, 636]);
 
oscar: E = elliptic_curve([0, 1, 1, -146, 636])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ\Z \oplus \Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(9,11)(9, 11)0.386475988216548684170975126990.38647598821654868417097512699\infty
(7,2)(7, 2)0.680352505372973860605526045980.68035250537297386060552604598\infty
(58/9,44/27)(58/9, 44/27)1.27141432426643513617316258131.2714143242664351361731625813\infty

Integral points

(14,11) \left(-14, 11\right) , (14,12) \left(-14, -12\right) , (13,22) \left(-13, 22\right) , (13,23) \left(-13, -23\right) , (6,36) \left(-6, 36\right) , (6,37) \left(-6, -37\right) , (3,32) \left(-3, 32\right) , (3,33) \left(-3, -33\right) , (4,11) \left(4, 11\right) , (4,12) \left(4, -12\right) , (5,7) \left(5, 7\right) , (5,8) \left(5, -8\right) , (6,3) \left(6, 3\right) , (6,4) \left(6, -4\right) , (7,2) \left(7, 2\right) , (7,3) \left(7, -3\right) , (9,11) \left(9, 11\right) , (9,12) \left(9, -12\right) , (12,27) \left(12, 27\right) , (12,28) \left(12, -28\right) , (16,51) \left(16, 51\right) , (16,52) \left(16, -52\right) , (22,92) \left(22, 92\right) , (22,93) \left(22, -93\right) , (32,172) \left(32, 172\right) , (32,173) \left(32, -173\right) , (55,402) \left(55, 402\right) , (55,403) \left(55, -403\right) , (109,1136) \left(109, 1136\right) , (109,1137) \left(109, -1137\right) , (147,1782) \left(147, 1782\right) , (147,1783) \left(147, -1783\right) , (351,6581) \left(351, 6581\right) , (351,6582) \left(351, -6582\right) , (537,12452) \left(537, 12452\right) , (537,12453) \left(537, -12453\right) , (1182,40652) \left(1182, 40652\right) , (1182,40653) \left(1182, -40653\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  18745 18745  = 5231635 \cdot 23 \cdot 163
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2155675-2155675 = 152232163-1 \cdot 5^{2} \cdot 23^{2} \cdot 163
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  3465401098242155675 -\frac{346540109824}{2155675}  = 12125223216314393-1 \cdot 2^{12} \cdot 5^{-2} \cdot 23^{-2} \cdot 163^{-1} \cdot 439^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.0535745597909893949908200991530.053574559790989394990820099153
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.0535745597909893949908200991530.053574559790989394990820099153
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.7751746784592090.775174678459209
Szpiro ratio: σm\sigma_{m} ≈ 2.70178010533029232.7017801053302923

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 3 3
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 3 3
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.309889177368998276572893469020.30988917736899827657289346902
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.61892728633379117509508976262.6189272863337911750950897626
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 221 2\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(3)(E,1)/3! L^{(3)}(E,1)/3! ≈ 3.24630888940480619866789562253.2463088894048061986678956225
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.246308889L(3)(E,1)/3!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.6189270.3098894123.246308889\displaystyle 3.246308889 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.618927 \cdot 0.309889 \cdot 4}{1^2} \approx 3.246308889

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   18745.2.a.a

q2q22q3+2q4q5+4q64q7+q9+2q106q114q124q13+8q14+2q154q166q172q186q19+O(q20) q - 2 q^{2} - 2 q^{3} + 2 q^{4} - q^{5} + 4 q^{6} - 4 q^{7} + q^{9} + 2 q^{10} - 6 q^{11} - 4 q^{12} - 4 q^{13} + 8 q^{14} + 2 q^{15} - 4 q^{16} - 6 q^{17} - 2 q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 10976
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2
2323 22 I2I_{2} nonsplit multiplicative 1 1 2 2
163163 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 2, 1], [1, 2, 0, 1], [325, 2, 324, 3], [165, 2, 165, 3], [1, 1, 325, 0]]
 
GL(2,Integers(326)).subgroup(gens)
 
Gens := [[1, 0, 2, 1], [1, 2, 0, 1], [325, 2, 324, 3], [165, 2, 165, 3], [1, 1, 325, 0]];
 
sub<GL(2,Integers(326))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 326=2163 326 = 2 \cdot 163 , index 22, genus 00, and generators

(1021),(1201),(32523243),(16521653),(113250)\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 325 & 2 \\ 324 & 3 \end{array}\right),\left(\begin{array}{rr} 165 & 2 \\ 165 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 325 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[326])K:=\Q(E[326]) is a degree-21046638242104663824 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/326Z)\GL_2(\Z/326\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 163 163
55 nonsplit multiplicative 66 3749=23163 3749 = 23 \cdot 163
2323 nonsplit multiplicative 2424 815=5163 815 = 5 \cdot 163
163163 nonsplit multiplicative 164164 115=523 115 = 5 \cdot 23

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 18745a consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.652.1 Z/2Z\Z/2\Z not in database
66 6.0.69291952.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 163
Reduction type ss ord nonsplit ord ord ord ord ord nonsplit ord ord ord ord ord ord nonsplit
λ\lambda-invariant(s) 11,4 5 7 3 3 3 3 3 5 3 3 3 3 3 3 3
μ\mu-invariant(s) 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.