y 2 + y = x 3 + x 2 − 146 x + 636 y^2+y=x^3+x^2-146x+636 y 2 + y = x 3 + x 2 − 1 4 6 x + 6 3 6
(homogenize , simplify )
y 2 z + y z 2 = x 3 + x 2 z − 146 x z 2 + 636 z 3 y^2z+yz^2=x^3+x^2z-146xz^2+636z^3 y 2 z + y z 2 = x 3 + x 2 z − 1 4 6 x z 2 + 6 3 6 z 3
(dehomogenize , simplify )
y 2 = x 3 − 189648 x + 31958928 y^2=x^3-189648x+31958928 y 2 = x 3 − 1 8 9 6 4 8 x + 3 1 9 5 8 9 2 8
(homogenize , minimize )
sage: E = EllipticCurve([0, 1, 1, -146, 636])
gp: E = ellinit([0, 1, 1, -146, 636])
magma: E := EllipticCurve([0, 1, 1, -146, 636]);
oscar: E = elliptic_curve([0, 1, 1, -146, 636])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z ⊕ Z \Z \oplus \Z \oplus \Z Z ⊕ Z ⊕ Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 9 , 11 ) (9, 11) ( 9 , 1 1 ) 0.38647598821654868417097512699 0.38647598821654868417097512699 0 . 3 8 6 4 7 5 9 8 8 2 1 6 5 4 8 6 8 4 1 7 0 9 7 5 1 2 6 9 9 ∞ \infty ∞
( 7 , 2 ) (7, 2) ( 7 , 2 ) 0.68035250537297386060552604598 0.68035250537297386060552604598 0 . 6 8 0 3 5 2 5 0 5 3 7 2 9 7 3 8 6 0 6 0 5 5 2 6 0 4 5 9 8 ∞ \infty ∞
( 58 / 9 , 44 / 27 ) (58/9, 44/27) ( 5 8 / 9 , 4 4 / 2 7 ) 1.2714143242664351361731625813 1.2714143242664351361731625813 1 . 2 7 1 4 1 4 3 2 4 2 6 6 4 3 5 1 3 6 1 7 3 1 6 2 5 8 1 3 ∞ \infty ∞
( − 14 , 11 ) \left(-14, 11\right) ( − 1 4 , 1 1 ) , ( − 14 , − 12 ) \left(-14, -12\right) ( − 1 4 , − 1 2 ) , ( − 13 , 22 ) \left(-13, 22\right) ( − 1 3 , 2 2 ) , ( − 13 , − 23 ) \left(-13, -23\right) ( − 1 3 , − 2 3 ) , ( − 6 , 36 ) \left(-6, 36\right) ( − 6 , 3 6 ) , ( − 6 , − 37 ) \left(-6, -37\right) ( − 6 , − 3 7 ) , ( − 3 , 32 ) \left(-3, 32\right) ( − 3 , 3 2 ) , ( − 3 , − 33 ) \left(-3, -33\right) ( − 3 , − 3 3 ) , ( 4 , 11 ) \left(4, 11\right) ( 4 , 1 1 ) , ( 4 , − 12 ) \left(4, -12\right) ( 4 , − 1 2 ) , ( 5 , 7 ) \left(5, 7\right) ( 5 , 7 ) , ( 5 , − 8 ) \left(5, -8\right) ( 5 , − 8 ) , ( 6 , 3 ) \left(6, 3\right) ( 6 , 3 ) , ( 6 , − 4 ) \left(6, -4\right) ( 6 , − 4 ) , ( 7 , 2 ) \left(7, 2\right) ( 7 , 2 ) , ( 7 , − 3 ) \left(7, -3\right) ( 7 , − 3 ) , ( 9 , 11 ) \left(9, 11\right) ( 9 , 1 1 ) , ( 9 , − 12 ) \left(9, -12\right) ( 9 , − 1 2 ) , ( 12 , 27 ) \left(12, 27\right) ( 1 2 , 2 7 ) , ( 12 , − 28 ) \left(12, -28\right) ( 1 2 , − 2 8 ) , ( 16 , 51 ) \left(16, 51\right) ( 1 6 , 5 1 ) , ( 16 , − 52 ) \left(16, -52\right) ( 1 6 , − 5 2 ) , ( 22 , 92 ) \left(22, 92\right) ( 2 2 , 9 2 ) , ( 22 , − 93 ) \left(22, -93\right) ( 2 2 , − 9 3 ) , ( 32 , 172 ) \left(32, 172\right) ( 3 2 , 1 7 2 ) , ( 32 , − 173 ) \left(32, -173\right) ( 3 2 , − 1 7 3 ) , ( 55 , 402 ) \left(55, 402\right) ( 5 5 , 4 0 2 ) , ( 55 , − 403 ) \left(55, -403\right) ( 5 5 , − 4 0 3 ) , ( 109 , 1136 ) \left(109, 1136\right) ( 1 0 9 , 1 1 3 6 ) , ( 109 , − 1137 ) \left(109, -1137\right) ( 1 0 9 , − 1 1 3 7 ) , ( 147 , 1782 ) \left(147, 1782\right) ( 1 4 7 , 1 7 8 2 ) , ( 147 , − 1783 ) \left(147, -1783\right) ( 1 4 7 , − 1 7 8 3 ) , ( 351 , 6581 ) \left(351, 6581\right) ( 3 5 1 , 6 5 8 1 ) , ( 351 , − 6582 ) \left(351, -6582\right) ( 3 5 1 , − 6 5 8 2 ) , ( 537 , 12452 ) \left(537, 12452\right) ( 5 3 7 , 1 2 4 5 2 ) , ( 537 , − 12453 ) \left(537, -12453\right) ( 5 3 7 , − 1 2 4 5 3 ) , ( 1182 , 40652 ) \left(1182, 40652\right) ( 1 1 8 2 , 4 0 6 5 2 ) , ( 1182 , − 40653 ) \left(1182, -40653\right) ( 1 1 8 2 , − 4 0 6 5 3 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
18745 18745 1 8 7 4 5 = 5 ⋅ 23 ⋅ 163 5 \cdot 23 \cdot 163 5 ⋅ 2 3 ⋅ 1 6 3
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 2155675 -2155675 − 2 1 5 5 6 7 5 = − 1 ⋅ 5 2 ⋅ 2 3 2 ⋅ 163 -1 \cdot 5^{2} \cdot 23^{2} \cdot 163 − 1 ⋅ 5 2 ⋅ 2 3 2 ⋅ 1 6 3
sage: E.discriminant().factor()
j-invariant :
j j j
=
− 346540109824 2155675 -\frac{346540109824}{2155675} − 2 1 5 5 6 7 5 3 4 6 5 4 0 1 0 9 8 2 4 = − 1 ⋅ 2 12 ⋅ 5 − 2 ⋅ 2 3 − 2 ⋅ 16 3 − 1 ⋅ 43 9 3 -1 \cdot 2^{12} \cdot 5^{-2} \cdot 23^{-2} \cdot 163^{-1} \cdot 439^{3} − 1 ⋅ 2 1 2 ⋅ 5 − 2 ⋅ 2 3 − 2 ⋅ 1 6 3 − 1 ⋅ 4 3 9 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.053574559790989394990820099153 0.053574559790989394990820099153 0 . 0 5 3 5 7 4 5 5 9 7 9 0 9 8 9 3 9 4 9 9 0 8 2 0 0 9 9 1 5 3
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.053574559790989394990820099153 0.053574559790989394990820099153 0 . 0 5 3 5 7 4 5 5 9 7 9 0 9 8 9 3 9 4 9 9 0 8 2 0 0 9 9 1 5 3
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.775174678459209 0.775174678459209 0 . 7 7 5 1 7 4 6 7 8 4 5 9 2 0 9
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.7017801053302923 2.7017801053302923 2 . 7 0 1 7 8 0 1 0 5 3 3 0 2 9 2 3
Analytic rank :
r a n r_{\mathrm{an}} r a n = 3 3 3
Mordell-Weil rank :
r r r = 3 3 3
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.30988917736899827657289346902 0.30988917736899827657289346902 0 . 3 0 9 8 8 9 1 7 7 3 6 8 9 9 8 2 7 6 5 7 2 8 9 3 4 6 9 0 2
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 2.6189272863337911750950897626 2.6189272863337911750950897626 2 . 6 1 8 9 2 7 2 8 6 3 3 3 7 9 1 1 7 5 0 9 5 0 8 9 7 6 2 6
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 4 4 4
= 2 ⋅ 2 ⋅ 1 2\cdot2\cdot1 2 ⋅ 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 3 ) ( E , 1 ) / 3 ! L^{(3)}(E,1)/3! L ( 3 ) ( E , 1 ) / 3 ! ≈ 3.2463088894048061986678956225 3.2463088894048061986678956225 3 . 2 4 6 3 0 8 8 8 9 4 0 4 8 0 6 1 9 8 6 6 7 8 9 5 6 2 2 5
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
3.246308889 ≈ L ( 3 ) ( E , 1 ) / 3 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 2.618927 ⋅ 0.309889 ⋅ 4 1 2 ≈ 3.246308889 \displaystyle 3.246308889 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.618927 \cdot 0.309889 \cdot 4}{1^2} \approx 3.246308889 3 . 2 4 6 3 0 8 8 8 9 ≈ L ( 3 ) ( E , 1 ) / 3 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 2 . 6 1 8 9 2 7 ⋅ 0 . 3 0 9 8 8 9 ⋅ 4 ≈ 3 . 2 4 6 3 0 8 8 8 9
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
18745.2.a.a
q − 2 q 2 − 2 q 3 + 2 q 4 − q 5 + 4 q 6 − 4 q 7 + q 9 + 2 q 10 − 6 q 11 − 4 q 12 − 4 q 13 + 8 q 14 + 2 q 15 − 4 q 16 − 6 q 17 − 2 q 18 − 6 q 19 + O ( q 20 ) q - 2 q^{2} - 2 q^{3} + 2 q^{4} - q^{5} + 4 q^{6} - 4 q^{7} + q^{9} + 2 q^{10} - 6 q^{11} - 4 q^{12} - 4 q^{13} + 8 q^{14} + 2 q^{15} - 4 q^{16} - 6 q^{17} - 2 q^{18} - 6 q^{19} + O(q^{20}) q − 2 q 2 − 2 q 3 + 2 q 4 − q 5 + 4 q 6 − 4 q 7 + q 9 + 2 q 1 0 − 6 q 1 1 − 4 q 1 2 − 4 q 1 3 + 8 q 1 4 + 2 q 1 5 − 4 q 1 6 − 6 q 1 7 − 2 q 1 8 − 6 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 3 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ .
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 0, 2, 1], [1, 2, 0, 1], [325, 2, 324, 3], [165, 2, 165, 3], [1, 1, 325, 0]]
GL(2,Integers(326)).subgroup(gens)
Gens := [[1, 0, 2, 1], [1, 2, 0, 1], [325, 2, 324, 3], [165, 2, 165, 3], [1, 1, 325, 0]];
sub<GL(2,Integers(326))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 326 = 2 ⋅ 163 326 = 2 \cdot 163 3 2 6 = 2 ⋅ 1 6 3 , index 2 2 2 , genus 0 0 0 , and generators
( 1 0 2 1 ) , ( 1 2 0 1 ) , ( 325 2 324 3 ) , ( 165 2 165 3 ) , ( 1 1 325 0 ) \left(\begin{array}{rr}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
325 & 2 \\
324 & 3
\end{array}\right),\left(\begin{array}{rr}
165 & 2 \\
165 & 3
\end{array}\right),\left(\begin{array}{rr}
1 & 1 \\
325 & 0
\end{array}\right) ( 1 2 0 1 ) , ( 1 0 2 1 ) , ( 3 2 5 3 2 4 2 3 ) , ( 1 6 5 1 6 5 2 3 ) , ( 1 3 2 5 1 0 ) .
The torsion field K : = Q ( E [ 326 ] ) K:=\Q(E[326]) K : = Q ( E [ 3 2 6 ] ) is a degree-2104663824 2104663824 2 1 0 4 6 6 3 8 2 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 326 Z ) \GL_2(\Z/326\Z) GL 2 ( Z / 3 2 6 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
good
2 2 2
163 163 1 6 3
5 5 5
nonsplit multiplicative
6 6 6
3749 = 23 ⋅ 163 3749 = 23 \cdot 163 3 7 4 9 = 2 3 ⋅ 1 6 3
23 23 2 3
nonsplit multiplicative
24 24 2 4
815 = 5 ⋅ 163 815 = 5 \cdot 163 8 1 5 = 5 ⋅ 1 6 3
163 163 1 6 3
nonsplit multiplicative
164 164 1 6 4
115 = 5 ⋅ 23 115 = 5 \cdot 23 1 1 5 = 5 ⋅ 2 3
This curve has no rational isogenies. Its isogeny class 18745a
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.1.652.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.0.69291952.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
deg 8
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
7
11
13
17
19
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97