Properties

Label 189225.g
Number of curves 44
Conductor 189225189225
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Elliptic curves in class 189225.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
189225.g1 189225k3 [1,1,1,48729380,129020370122][1, -1, 1, -48729380, 129020370122] 1888690601881/318276451888690601881/31827645 215645324818954590703125215645324818954590703125 [2][2] 3096576030965760 3.27533.2753  
189225.g2 189225k2 [1,1,1,6153755,2793764878][1, -1, 1, -6153755, -2793764878] 3803721481/17030253803721481/1703025 1153869157770862851562511538691577708628515625 [2,2][2, 2] 1548288015482880 2.92872.9287  
189225.g3 189225k1 [1,1,1,5207630,4570587628][1, -1, 1, -5207630, -4570587628] 2305199161/13052305199161/1305 88419092549491406258841909254949140625 [2][2] 77414407741440 2.58222.5822 Γ0(N)\Gamma_0(N)-optimal
189225.g4 189225k4 [1,1,1,21283870,20902597378][1, -1, 1, 21283870, -20902597378] 157376536199/118918125157376536199/118918125 805718980857240439453125-805718980857240439453125 [2][2] 3096576030965760 3.27533.2753  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 189225.g have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
3311
5511
292911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+T+2T2 1 + T + 2 T^{2} 1.2.b
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 14T+19T2 1 - 4 T + 19 T^{2} 1.19.ae
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 189225.g do not have complex multiplication.

Modular form 189225.2.a.g

Copy content sage:E.q_eigenform(10)
 
qq2q44q7+3q84q116q13+4q14q166q17+4q19+O(q20)q - q^{2} - q^{4} - 4 q^{7} + 3 q^{8} - 4 q^{11} - 6 q^{13} + 4 q^{14} - q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.