sage:E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 189225.g
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
189225.g1 |
189225k3 |
[1,−1,1,−48729380,129020370122] |
1888690601881/31827645 |
215645324818954590703125 |
[2] |
30965760 |
3.2753
|
|
189225.g2 |
189225k2 |
[1,−1,1,−6153755,−2793764878] |
3803721481/1703025 |
11538691577708628515625 |
[2,2] |
15482880 |
2.9287
|
|
189225.g3 |
189225k1 |
[1,−1,1,−5207630,−4570587628] |
2305199161/1305 |
8841909254949140625 |
[2] |
7741440 |
2.5822
|
Γ0(N)-optimal |
189225.g4 |
189225k4 |
[1,−1,1,21283870,−20902597378] |
157376536199/118918125 |
−805718980857240439453125 |
[2] |
30965760 |
3.2753
|
|
sage:E.rank()
The elliptic curves in class 189225.g have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1 |
5 | 1 |
29 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1+T+2T2 |
1.2.b
|
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+4T+23T2 |
1.23.e
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 189225.g do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.