E = EllipticCurve("bh1")
E.isogeny_class()
Elliptic curves in class 19110bh
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
19110.bg3 |
19110bh1 |
[1,0,1,−663,−6422] |
273359449/9360 |
1101194640 |
[2] |
12288 |
0.50684
|
Γ0(N)-optimal |
19110.bg2 |
19110bh2 |
[1,0,1,−1643,16706] |
4165509529/1368900 |
161049716100 |
[2,2] |
24576 |
0.85341
|
|
19110.bg1 |
19110bh3 |
[1,0,1,−23693,1401446] |
12501706118329/2570490 |
302415578010 |
[2] |
49152 |
1.2000
|
|
19110.bg4 |
19110bh4 |
[1,0,1,4727,116078] |
99317171591/106616250 |
−12543295196250 |
[2] |
49152 |
1.2000
|
|
The elliptic curves in class 19110bh have
rank 1.
The elliptic curves in class 19110bh do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.