Properties

Label 19110bh
Number of curves 44
Conductor 1911019110
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bh1")
 
E.isogeny_class()
 

Elliptic curves in class 19110bh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19110.bg3 19110bh1 [1,0,1,663,6422][1, 0, 1, -663, -6422] 273359449/9360273359449/9360 11011946401101194640 [2][2] 1228812288 0.506840.50684 Γ0(N)\Gamma_0(N)-optimal
19110.bg2 19110bh2 [1,0,1,1643,16706][1, 0, 1, -1643, 16706] 4165509529/13689004165509529/1368900 161049716100161049716100 [2,2][2, 2] 2457624576 0.853410.85341  
19110.bg1 19110bh3 [1,0,1,23693,1401446][1, 0, 1, -23693, 1401446] 12501706118329/257049012501706118329/2570490 302415578010302415578010 [2][2] 4915249152 1.20001.2000  
19110.bg4 19110bh4 [1,0,1,4727,116078][1, 0, 1, 4727, 116078] 99317171591/10661625099317171591/106616250 12543295196250-12543295196250 [2][2] 4915249152 1.20001.2000  

Rank

sage: E.rank()
 

The elliptic curves in class 19110bh have rank 11.

Complex multiplication

The elliptic curves in class 19110bh do not have complex multiplication.

Modular form 19110.2.a.bh

sage: E.q_eigenform(10)
 
qq2+q3+q4+q5q6q8+q9q10+q12+q13+q15+q16+6q17q18+O(q20)q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} + q^{12} + q^{13} + q^{15} + q^{16} + 6 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.