Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 19110f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
19110.k1 | 19110f1 | \([1, 1, 0, -6052, -189986]\) | \(-86806489/3510\) | \(-991488123990\) | \([]\) | \(36288\) | \(1.0698\) | \(\Gamma_0(N)\)-optimal |
19110.k2 | 19110f2 | \([1, 1, 0, 29963, -557339]\) | \(10531168151/6591000\) | \(-1861794366159000\) | \([]\) | \(108864\) | \(1.6191\) |
Rank
sage: E.rank()
The elliptic curves in class 19110f have rank \(1\).
Complex multiplication
The elliptic curves in class 19110f do not have complex multiplication.Modular form 19110.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.