Show commands:
SageMath
E = EllipticCurve("h1")
E.isogeny_class()
Elliptic curves in class 19110h
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
19110.h2 | 19110h1 | \([1, 1, 0, -446597197, 2132451124189]\) | \(244112114391139785383263/92579080750403420160\) | \(3735899841023044708592517120\) | \([2]\) | \(12579840\) | \(3.9901\) | \(\Gamma_0(N)\)-optimal |
19110.h1 | 19110h2 | \([1, 1, 0, -6291097677, 192005076018141]\) | \(682371118085879605963267423/216558834602980147200\) | \(8738930103946661888910950400\) | \([2]\) | \(25159680\) | \(4.3367\) |
Rank
sage: E.rank()
The elliptic curves in class 19110h have rank \(1\).
Complex multiplication
The elliptic curves in class 19110h do not have complex multiplication.Modular form 19110.2.a.h
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.