Properties

Label 19110j
Number of curves $8$
Conductor $19110$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 19110j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
19110.m7 19110j1 \([1, 1, 0, -167752, -39126464]\) \(-4437543642183289/3033210136320\) \(-356854139327911680\) \([2]\) \(331776\) \(2.0684\) \(\Gamma_0(N)\)-optimal
19110.m6 19110j2 \([1, 1, 0, -3025432, -2026357136]\) \(26031421522845051769/5797789779600\) \(682104169780160400\) \([2, 2]\) \(663552\) \(2.4150\)  
19110.m8 19110j3 \([1, 1, 0, 1360313, 582407029]\) \(2366200373628880151/2612420149248000\) \(-307348618138877952000\) \([2]\) \(995328\) \(2.6177\)  
19110.m3 19110j4 \([1, 1, 0, -48404332, -129640899716]\) \(106607603143751752938169/5290068420\) \(622371259544580\) \([2]\) \(1327104\) \(2.7616\)  
19110.m5 19110j5 \([1, 1, 0, -3369412, -1537423964]\) \(35958207000163259449/12145729518877500\) \(1428932932166418997500\) \([2]\) \(1327104\) \(2.7616\)  
19110.m4 19110j6 \([1, 1, 0, -7671367, 5454095221]\) \(424378956393532177129/136231857216000000\) \(16027541769605184000000\) \([2, 2]\) \(1990656\) \(2.9643\)  
19110.m2 19110j7 \([1, 1, 0, -48831367, -127237512779]\) \(109454124781830273937129/3914078300576808000\) \(460487397984560884392000\) \([2]\) \(3981312\) \(3.3109\)  
19110.m1 19110j8 \([1, 1, 0, -111018247, 450114381109]\) \(1286229821345376481036009/247265484375000000\) \(29090536971234375000000\) \([2]\) \(3981312\) \(3.3109\)  

Rank

sage: E.rank()
 

The elliptic curves in class 19110j have rank \(1\).

Complex multiplication

The elliptic curves in class 19110j do not have complex multiplication.

Modular form 19110.2.a.j

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - q^{12} - q^{13} - q^{15} + q^{16} + 6 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.