Properties

Label 1920.e
Number of curves 22
Conductor 19201920
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Elliptic curves in class 1920.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1920.e1 1920a2 [0,1,0,41,39][0, -1, 0, -41, -39] 953312/405953312/405 33177603317760 [2][2] 256256 0.052094-0.052094  
1920.e2 1920a1 [0,1,0,9,9][0, -1, 0, 9, -9] 281216/225281216/225 57600-57600 [2][2] 128128 0.39867-0.39867 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1920.e have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 12T+23T2 1 - 2 T + 23 T^{2} 1.23.ac
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1920.e do not have complex multiplication.

Modular form 1920.2.a.e

Copy content sage:E.q_eigenform(10)
 
qq3q5+2q7+q92q112q13+q152q17+2q19+O(q20)q - q^{3} - q^{5} + 2 q^{7} + q^{9} - 2 q^{11} - 2 q^{13} + q^{15} - 2 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.