Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 1920.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1920.f1 | 1920m1 | \([0, -1, 0, -6, 6]\) | \(219488/75\) | \(9600\) | \([2]\) | \(192\) | \(-0.53386\) | \(\Gamma_0(N)\)-optimal |
1920.f2 | 1920m2 | \([0, -1, 0, 19, 21]\) | \(43904/45\) | \(-737280\) | \([2]\) | \(384\) | \(-0.18728\) |
Rank
sage: E.rank()
The elliptic curves in class 1920.f have rank \(0\).
Complex multiplication
The elliptic curves in class 1920.f do not have complex multiplication.Modular form 1920.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.