Properties

Label 1920.r
Number of curves 22
Conductor 19201920
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 1920.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1920.r1 1920g1 [0,1,0,606,5850][0, 1, 0, -606, -5850] 192596360288/3796875192596360288/3796875 486000000486000000 [2][2] 960960 0.458850.45885 Γ0(N)\Gamma_0(N)-optimal
1920.r2 1920g2 [0,1,0,19,16725][0, 1, 0, 19, -16725] 43904/738112543904/7381125 120932352000-120932352000 [2][2] 19201920 0.805430.80543  

Rank

sage: E.rank()
 

The elliptic curves in class 1920.r have rank 00.

Complex multiplication

The elliptic curves in class 1920.r do not have complex multiplication.

Modular form 1920.2.a.r

sage: E.q_eigenform(10)
 
q+q3q5+4q7+q92q11q15+O(q20)q + q^{3} - q^{5} + 4 q^{7} + q^{9} - 2 q^{11} - q^{15} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.