Properties

Label 1920.r
Number of curves $2$
Conductor $1920$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("r1")
 
E.isogeny_class()
 

Elliptic curves in class 1920.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1920.r1 1920g1 \([0, 1, 0, -606, -5850]\) \(192596360288/3796875\) \(486000000\) \([2]\) \(960\) \(0.45885\) \(\Gamma_0(N)\)-optimal
1920.r2 1920g2 \([0, 1, 0, 19, -16725]\) \(43904/7381125\) \(-120932352000\) \([2]\) \(1920\) \(0.80543\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1920.r have rank \(0\).

Complex multiplication

The elliptic curves in class 1920.r do not have complex multiplication.

Modular form 1920.2.a.r

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 4 q^{7} + q^{9} - 2 q^{11} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.