Show commands:
SageMath
E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 1920.t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1920.t1 | 1920i2 | \([0, 1, 0, -1225, 15623]\) | \(24836849888/820125\) | \(6718464000\) | \([2]\) | \(1536\) | \(0.65883\) | |
1920.t2 | 1920i1 | \([0, 1, 0, 25, 873]\) | \(6483584/1265625\) | \(-324000000\) | \([2]\) | \(768\) | \(0.31226\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1920.t have rank \(1\).
Complex multiplication
The elliptic curves in class 1920.t do not have complex multiplication.Modular form 1920.2.a.t
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.