Properties

Label 1920.t
Number of curves $2$
Conductor $1920$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 1920.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1920.t1 1920i2 \([0, 1, 0, -1225, 15623]\) \(24836849888/820125\) \(6718464000\) \([2]\) \(1536\) \(0.65883\)  
1920.t2 1920i1 \([0, 1, 0, 25, 873]\) \(6483584/1265625\) \(-324000000\) \([2]\) \(768\) \(0.31226\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1920.t have rank \(1\).

Complex multiplication

The elliptic curves in class 1920.t do not have complex multiplication.

Modular form 1920.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{7} + q^{9} - 2 q^{11} - 6 q^{13} + q^{15} - 6 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.