Properties

Label 192960.dn2
Conductor 192960192960
Discriminant 7.596×10187.596\times 10^{18}
j-invariant 281391269564164158994140625 \frac{281391269564164}{158994140625}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3495372x20629136y^2=x^3-495372x-20629136 Copy content Toggle raw display (homogenize, simplify)
y2z=x3495372xz220629136z3y^2z=x^3-495372xz^2-20629136z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3495372x20629136y^2=x^3-495372x-20629136 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -495372, -20629136])
 
gp: E = ellinit([0, 0, 0, -495372, -20629136])
 
magma: E := EllipticCurve([0, 0, 0, -495372, -20629136]);
 
oscar: E = elliptic_curve([0, 0, 0, -495372, -20629136])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(307,10125)(-307, 10125)0.842494898693606255941385553060.84249489869360625594138555306\infty
(682,0)(-682, 0)0022

Integral points

(682,0) \left(-682, 0\right) , (307,±10125)(-307,\pm 10125), (42,±320)(-42,\pm 320), (1718,±64800)(1718,\pm 64800) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  192960 192960  = 26325672^{6} \cdot 3^{2} \cdot 5 \cdot 67
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  75960633600000000007596063360000000000 = 216311510672^{16} \cdot 3^{11} \cdot 5^{10} \cdot 67
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  281391269564164158994140625 \frac{281391269564164}{158994140625}  = 22355106714128132^{2} \cdot 3^{-5} \cdot 5^{-10} \cdot 67^{-1} \cdot 41281^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.31285541609501414850865334562.3128554160950141485086533456
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.839353031014365556921387898530.83935303101436555692138789853
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.98702311588151510.9870231158815151
Szpiro ratio: σm\sigma_{m} ≈ 4.1866720313990794.186672031399079

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.842494898693606255941385553060.84249489869360625594138555306
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.193955256725295122568713378470.19395525672529512256871337847
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 160 160  = 2222(25)1 2^{2}\cdot2^{2}\cdot( 2 \cdot 5 )\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 6.53625257463479630983231464556.5362525746347963098323146455
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.536252575L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1939550.842495160226.536252575\displaystyle 6.536252575 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.193955 \cdot 0.842495 \cdot 160}{2^2} \approx 6.536252575

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 192960.2.a.dn

q+q52q7+2q134q17+O(q20) q + q^{5} - 2 q^{7} + 2 q^{13} - 4 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2867200
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I6I_{6}^{*} additive 1 6 16 0
33 44 I5I_{5}^{*} additive -1 2 11 5
55 1010 I10I_{10} split multiplicative -1 1 10 10
6767 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [3017, 5026, 5024, 3015], [4021, 4, 2, 9], [1, 4, 0, 1], [5362, 1, 5359, 0], [1, 0, 4, 1], [2282, 1, 2879, 0], [3, 4, 8, 11], [3217, 4, 6434, 9], [8037, 4, 8036, 5]]
 
GL(2,Integers(8040)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [3017, 5026, 5024, 3015], [4021, 4, 2, 9], [1, 4, 0, 1], [5362, 1, 5359, 0], [1, 0, 4, 1], [2282, 1, 2879, 0], [3, 4, 8, 11], [3217, 4, 6434, 9], [8037, 4, 8036, 5]];
 
sub<GL(2,Integers(8040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 8040=233567 8040 = 2^{3} \cdot 3 \cdot 5 \cdot 67 , index 1212, genus 00, and generators

(1225),(3017502650243015),(4021429),(1401),(5362153590),(1041),(2282128790),(34811),(3217464349),(8037480365)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 3017 & 5026 \\ 5024 & 3015 \end{array}\right),\left(\begin{array}{rr} 4021 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5362 & 1 \\ 5359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 2282 & 1 \\ 2879 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 3217 & 4 \\ 6434 & 9 \end{array}\right),\left(\begin{array}{rr} 8037 & 4 \\ 8036 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[8040])K:=\Q(E[8040]) is a degree-5852804677632058528046776320 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/8040Z)\GL_2(\Z/8040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 603=3267 603 = 3^{2} \cdot 67
33 additive 88 21440=26567 21440 = 2^{6} \cdot 5 \cdot 67
55 split multiplicative 66 38592=263267 38592 = 2^{6} \cdot 3^{2} \cdot 67
6767 nonsplit multiplicative 6868 2880=26325 2880 = 2^{6} \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 192960.dn consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 8040.e2, its twist by 24-24.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(201)\Q(\sqrt{201}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.321600.1 Z/4Z\Z/4\Z not in database
88 8.0.4178536450560000.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.