y 2 = x 3 − 495372 x − 20629136 y^2=x^3-495372x-20629136 y 2 = x 3 − 4 9 5 3 7 2 x − 2 0 6 2 9 1 3 6
(homogenize , simplify )
y 2 z = x 3 − 495372 x z 2 − 20629136 z 3 y^2z=x^3-495372xz^2-20629136z^3 y 2 z = x 3 − 4 9 5 3 7 2 x z 2 − 2 0 6 2 9 1 3 6 z 3
(dehomogenize , simplify )
y 2 = x 3 − 495372 x − 20629136 y^2=x^3-495372x-20629136 y 2 = x 3 − 4 9 5 3 7 2 x − 2 0 6 2 9 1 3 6
(homogenize , minimize )
sage: E = EllipticCurve([0, 0, 0, -495372, -20629136])
gp: E = ellinit([0, 0, 0, -495372, -20629136])
magma: E := EllipticCurve([0, 0, 0, -495372, -20629136]);
oscar: E = elliptic_curve([0, 0, 0, -495372, -20629136])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 307 , 10125 ) (-307, 10125) ( − 3 0 7 , 1 0 1 2 5 ) 0.84249489869360625594138555306 0.84249489869360625594138555306 0 . 8 4 2 4 9 4 8 9 8 6 9 3 6 0 6 2 5 5 9 4 1 3 8 5 5 5 3 0 6 ∞ \infty ∞
( − 682 , 0 ) (-682, 0) ( − 6 8 2 , 0 ) 0 0 0 2 2 2
( − 682 , 0 ) \left(-682, 0\right) ( − 6 8 2 , 0 ) , ( − 307 , ± 10125 ) (-307,\pm 10125) ( − 3 0 7 , ± 1 0 1 2 5 ) , ( − 42 , ± 320 ) (-42,\pm 320) ( − 4 2 , ± 3 2 0 ) , ( 1718 , ± 64800 ) (1718,\pm 64800) ( 1 7 1 8 , ± 6 4 8 0 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
192960 192960 1 9 2 9 6 0 = 2 6 ⋅ 3 2 ⋅ 5 ⋅ 67 2^{6} \cdot 3^{2} \cdot 5 \cdot 67 2 6 ⋅ 3 2 ⋅ 5 ⋅ 6 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
7596063360000000000 7596063360000000000 7 5 9 6 0 6 3 3 6 0 0 0 0 0 0 0 0 0 0 = 2 16 ⋅ 3 11 ⋅ 5 10 ⋅ 67 2^{16} \cdot 3^{11} \cdot 5^{10} \cdot 67 2 1 6 ⋅ 3 1 1 ⋅ 5 1 0 ⋅ 6 7
sage: E.discriminant().factor()
j-invariant :
j j j
=
281391269564164 158994140625 \frac{281391269564164}{158994140625} 1 5 8 9 9 4 1 4 0 6 2 5 2 8 1 3 9 1 2 6 9 5 6 4 1 6 4 = 2 2 ⋅ 3 − 5 ⋅ 5 − 10 ⋅ 6 7 − 1 ⋅ 4128 1 3 2^{2} \cdot 3^{-5} \cdot 5^{-10} \cdot 67^{-1} \cdot 41281^{3} 2 2 ⋅ 3 − 5 ⋅ 5 − 1 0 ⋅ 6 7 − 1 ⋅ 4 1 2 8 1 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.3128554160950141485086533456 2.3128554160950141485086533456 2 . 3 1 2 8 5 5 4 1 6 0 9 5 0 1 4 1 4 8 5 0 8 6 5 3 3 4 5 6
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.83935303101436555692138789853 0.83935303101436555692138789853 0 . 8 3 9 3 5 3 0 3 1 0 1 4 3 6 5 5 5 6 9 2 1 3 8 7 8 9 8 5 3
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9870231158815151 0.9870231158815151 0 . 9 8 7 0 2 3 1 1 5 8 8 1 5 1 5 1
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.186672031399079 4.186672031399079 4 . 1 8 6 6 7 2 0 3 1 3 9 9 0 7 9
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.84249489869360625594138555306 0.84249489869360625594138555306 0 . 8 4 2 4 9 4 8 9 8 6 9 3 6 0 6 2 5 5 9 4 1 3 8 5 5 5 3 0 6
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.19395525672529512256871337847 0.19395525672529512256871337847 0 . 1 9 3 9 5 5 2 5 6 7 2 5 2 9 5 1 2 2 5 6 8 7 1 3 3 7 8 4 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 160 160 1 6 0
= 2 2 ⋅ 2 2 ⋅ ( 2 ⋅ 5 ) ⋅ 1 2^{2}\cdot2^{2}\cdot( 2 \cdot 5 )\cdot1 2 2 ⋅ 2 2 ⋅ ( 2 ⋅ 5 ) ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 6.5362525746347963098323146455 6.5362525746347963098323146455 6 . 5 3 6 2 5 2 5 7 4 6 3 4 7 9 6 3 0 9 8 3 2 3 1 4 6 4 5 5
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
6.536252575 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.193955 ⋅ 0.842495 ⋅ 160 2 2 ≈ 6.536252575 \displaystyle 6.536252575 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.193955 \cdot 0.842495 \cdot 160}{2^2} \approx 6.536252575 6 . 5 3 6 2 5 2 5 7 5 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 1 9 3 9 5 5 ⋅ 0 . 8 4 2 4 9 5 ⋅ 1 6 0 ≈ 6 . 5 3 6 2 5 2 5 7 5
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
192960.2.a.dn
q + q 5 − 2 q 7 + 2 q 13 − 4 q 17 + O ( q 20 ) q + q^{5} - 2 q^{7} + 2 q^{13} - 4 q^{17} + O(q^{20}) q + q 5 − 2 q 7 + 2 q 1 3 − 4 q 1 7 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 2, 2, 5], [3017, 5026, 5024, 3015], [4021, 4, 2, 9], [1, 4, 0, 1], [5362, 1, 5359, 0], [1, 0, 4, 1], [2282, 1, 2879, 0], [3, 4, 8, 11], [3217, 4, 6434, 9], [8037, 4, 8036, 5]]
GL(2,Integers(8040)).subgroup(gens)
Gens := [[1, 2, 2, 5], [3017, 5026, 5024, 3015], [4021, 4, 2, 9], [1, 4, 0, 1], [5362, 1, 5359, 0], [1, 0, 4, 1], [2282, 1, 2879, 0], [3, 4, 8, 11], [3217, 4, 6434, 9], [8037, 4, 8036, 5]];
sub<GL(2,Integers(8040))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 8040 = 2 3 ⋅ 3 ⋅ 5 ⋅ 67 8040 = 2^{3} \cdot 3 \cdot 5 \cdot 67 8 0 4 0 = 2 3 ⋅ 3 ⋅ 5 ⋅ 6 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1 2 2 5 ) , ( 3017 5026 5024 3015 ) , ( 4021 4 2 9 ) , ( 1 4 0 1 ) , ( 5362 1 5359 0 ) , ( 1 0 4 1 ) , ( 2282 1 2879 0 ) , ( 3 4 8 11 ) , ( 3217 4 6434 9 ) , ( 8037 4 8036 5 ) \left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
3017 & 5026 \\
5024 & 3015
\end{array}\right),\left(\begin{array}{rr}
4021 & 4 \\
2 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
5362 & 1 \\
5359 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
2282 & 1 \\
2879 & 0
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right),\left(\begin{array}{rr}
3217 & 4 \\
6434 & 9
\end{array}\right),\left(\begin{array}{rr}
8037 & 4 \\
8036 & 5
\end{array}\right) ( 1 2 2 5 ) , ( 3 0 1 7 5 0 2 4 5 0 2 6 3 0 1 5 ) , ( 4 0 2 1 2 4 9 ) , ( 1 0 4 1 ) , ( 5 3 6 2 5 3 5 9 1 0 ) , ( 1 4 0 1 ) , ( 2 2 8 2 2 8 7 9 1 0 ) , ( 3 8 4 1 1 ) , ( 3 2 1 7 6 4 3 4 4 9 ) , ( 8 0 3 7 8 0 3 6 4 5 ) .
The torsion field K : = Q ( E [ 8040 ] ) K:=\Q(E[8040]) K : = Q ( E [ 8 0 4 0 ] ) is a degree-58528046776320 58528046776320 5 8 5 2 8 0 4 6 7 7 6 3 2 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 8040 Z ) \GL_2(\Z/8040\Z) GL 2 ( Z / 8 0 4 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
603 = 3 2 ⋅ 67 603 = 3^{2} \cdot 67 6 0 3 = 3 2 ⋅ 6 7
3 3 3
additive
8 8 8
21440 = 2 6 ⋅ 5 ⋅ 67 21440 = 2^{6} \cdot 5 \cdot 67 2 1 4 4 0 = 2 6 ⋅ 5 ⋅ 6 7
5 5 5
split multiplicative
6 6 6
38592 = 2 6 ⋅ 3 2 ⋅ 67 38592 = 2^{6} \cdot 3^{2} \cdot 67 3 8 5 9 2 = 2 6 ⋅ 3 2 ⋅ 6 7
67 67 6 7
nonsplit multiplicative
68 68 6 8
2880 = 2 6 ⋅ 3 2 ⋅ 5 2880 = 2^{6} \cdot 3^{2} \cdot 5 2 8 8 0 = 2 6 ⋅ 3 2 ⋅ 5
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 192960.dn
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
8040.e2 , its twist by − 24 -24 − 2 4 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 201 ) \Q(\sqrt{201}) Q ( 2 0 1 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.321600.1
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.0.4178536450560000.3
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.