Properties

Label 1936.k
Number of curves $2$
Conductor $1936$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 1936.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1936.k1 1936i2 \([0, -1, 0, -832, -9216]\) \(-128667913/4096\) \(-2030043136\) \([]\) \(1152\) \(0.56194\)  
1936.k2 1936i1 \([0, -1, 0, 48, -64]\) \(24167/16\) \(-7929856\) \([]\) \(384\) \(0.012633\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1936.k have rank \(1\).

Complex multiplication

The elliptic curves in class 1936.k do not have complex multiplication.

Modular form 1936.2.a.k

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - 3 q^{5} + 2 q^{7} + q^{9} - 5 q^{13} - 6 q^{15} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.