Properties

Label 1936.k
Number of curves 22
Conductor 19361936
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 1936.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1936.k1 1936i2 [0,1,0,832,9216][0, -1, 0, -832, -9216] 128667913/4096-128667913/4096 2030043136-2030043136 [][] 11521152 0.561940.56194  
1936.k2 1936i1 [0,1,0,48,64][0, -1, 0, 48, -64] 24167/1624167/16 7929856-7929856 [][] 384384 0.0126330.012633 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1936.k have rank 11.

Complex multiplication

The elliptic curves in class 1936.k do not have complex multiplication.

Modular form 1936.2.a.k

sage: E.q_eigenform(10)
 
q+2q33q5+2q7+q95q136q153q17+2q19+O(q20)q + 2 q^{3} - 3 q^{5} + 2 q^{7} + q^{9} - 5 q^{13} - 6 q^{15} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1331)\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.