Properties

Label 193600.fo
Number of curves 44
Conductor 193600193600
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fo1")
 
E.isogeny_class()
 

Elliptic curves in class 193600.fo

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
193600.fo1 193600hx3 [0,0,0,91318700,17284366000][0, 0, 0, -91318700, 17284366000] 46424454082884/2679486012546424454082884/26794860125 4860797869865484800000000048607978698654848000000000 [2][2] 5308416053084160 3.61833.6183  
193600.fo2 193600hx2 [0,0,0,61068700,183031134000][0, 0, 0, -61068700, -183031134000] 55537159171536/22876562555537159171536/228765625 103749698404000000000000103749698404000000000000 [2,2][2, 2] 2654208026542080 3.27183.2718  
193600.fo3 193600hx1 [0,0,0,61008200,183413131000][0, 0, 0, -61008200, -183413131000] 885956203616256/15125885956203616256/15125 428717762000000000428717762000000000 [2][2] 1327104013271040 2.92522.9252 Γ0(N)\Gamma_0(N)-optimal
193600.fo4 193600hx4 [0,0,0,31786700,358898826000][0, 0, 0, -31786700, -358898826000] 1957960715364/29541015625-1957960715364/29541015625 53589720250000000000000000-53589720250000000000000000 [2][2] 5308416053084160 3.61833.6183  

Rank

sage: E.rank()
 

The elliptic curves in class 193600.fo have rank 00.

Complex multiplication

The elliptic curves in class 193600.fo do not have complex multiplication.

Modular form 193600.2.a.fo

sage: E.q_eigenform(10)
 
q+4q73q96q136q17+4q19+O(q20)q + 4 q^{7} - 3 q^{9} - 6 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.