E = EllipticCurve("fo1")
E.isogeny_class()
Elliptic curves in class 193600.fo
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
193600.fo1 |
193600hx3 |
[0,0,0,−91318700,17284366000] |
46424454082884/26794860125 |
48607978698654848000000000 |
[2] |
53084160 |
3.6183
|
|
193600.fo2 |
193600hx2 |
[0,0,0,−61068700,−183031134000] |
55537159171536/228765625 |
103749698404000000000000 |
[2,2] |
26542080 |
3.2718
|
|
193600.fo3 |
193600hx1 |
[0,0,0,−61008200,−183413131000] |
885956203616256/15125 |
428717762000000000 |
[2] |
13271040 |
2.9252
|
Γ0(N)-optimal |
193600.fo4 |
193600hx4 |
[0,0,0,−31786700,−358898826000] |
−1957960715364/29541015625 |
−53589720250000000000000000 |
[2] |
53084160 |
3.6183
|
|
The elliptic curves in class 193600.fo have
rank 0.
The elliptic curves in class 193600.fo do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.