Properties

Label 193600cr3
Conductor 193600193600
Discriminant 5.359×1025-5.359\times 10^{25}
j-invariant 195796071536429541015625 -\frac{1957960715364}{29541015625}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x331786700x+358898826000y^2=x^3-31786700x+358898826000 Copy content Toggle raw display (homogenize, simplify)
y2z=x331786700xz2+358898826000z3y^2z=x^3-31786700xz^2+358898826000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x331786700x+358898826000y^2=x^3-31786700x+358898826000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -31786700, 358898826000])
 
gp: E = ellinit([0, 0, 0, -31786700, 358898826000])
 
magma: E := EllipticCurve([0, 0, 0, -31786700, 358898826000]);
 
oscar: E = elliptic_curve([0, 0, 0, -31786700, 358898826000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1221,567369)(1221, 567369)6.91411441145491394420092986626.9141144114549139442009298662\infty
(8580,0)(-8580, 0)0022

Integral points

(8580,0) \left(-8580, 0\right) , (1221,±567369)(1221,\pm 567369) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  193600 193600  = 26521122^{6} \cdot 5^{2} \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  53589720250000000000000000-53589720250000000000000000 = 1216518118-1 \cdot 2^{16} \cdot 5^{18} \cdot 11^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  195796071536429541015625 -\frac{1957960715364}{29541015625}  = 12233512112373713-1 \cdot 2^{2} \cdot 3^{3} \cdot 5^{-12} \cdot 11^{-2} \cdot 37^{3} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.61834614706106598532968678383.6183461470610659853296867838
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.690483313698236780108692499590.69048331369823678010869249959
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.10389149369923431.1038914936992343
Szpiro ratio: σm\sigma_{m} ≈ 5.4820295854319135.482029585431913

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 6.91411441145491394420092986626.9141144114549139442009298662
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0532907654757271095443128879780.053290765475727109544312887978
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 1.47383379829275516446303657561.4738337982927551644630365756
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.473833798L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0532916.91411416221.473833798\displaystyle 1.473833798 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.053291 \cdot 6.914114 \cdot 16}{2^2} \approx 1.473833798

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 193600.2.a.dx

q4q73q96q136q174q19+O(q20) q - 4 q^{7} - 3 q^{9} - 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 53084160
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I6I_{6}^{*} additive -1 6 16 0
55 44 I12I_{12}^{*} additive 1 2 18 12
1111 22 I2I_{2}^{*} additive -1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.24.0.66

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 16, 0, 1], [207, 108, 104, 219], [384, 479, 47, 696], [703, 864, 516, 687], [465, 714, 726, 173], [1, 12, 4, 49], [1, 0, 16, 1], [5, 16, 64, 205], [865, 16, 864, 17]]
 
GL(2,Integers(880)).subgroup(gens)
 
Gens := [[1, 16, 0, 1], [207, 108, 104, 219], [384, 479, 47, 696], [703, 864, 516, 687], [465, 714, 726, 173], [1, 12, 4, 49], [1, 0, 16, 1], [5, 16, 64, 205], [865, 16, 864, 17]];
 
sub<GL(2,Integers(880))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 880=24511 880 = 2^{4} \cdot 5 \cdot 11 , index 192192, genus 33, and generators

(11601),(207108104219),(38447947696),(703864516687),(465714726173),(112449),(10161),(51664205),(8651686417)\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 207 & 108 \\ 104 & 219 \end{array}\right),\left(\begin{array}{rr} 384 & 479 \\ 47 & 696 \end{array}\right),\left(\begin{array}{rr} 703 & 864 \\ 516 & 687 \end{array}\right),\left(\begin{array}{rr} 465 & 714 \\ 726 & 173 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 4 & 49 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 64 & 205 \end{array}\right),\left(\begin{array}{rr} 865 & 16 \\ 864 & 17 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[880])K:=\Q(E[880]) is a degree-811008000811008000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/880Z)\GL_2(\Z/880\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 3025=52112 3025 = 5^{2} \cdot 11^{2}
55 additive 1818 7744=26112 7744 = 2^{6} \cdot 11^{2}
1111 additive 7272 1600=2652 1600 = 2^{6} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 193600cr consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 440c4, its twist by 440440.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(1)\Q(\sqrt{-1}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(110)\Q(\sqrt{110}) Z/4Z\Z/4\Z not in database
22 Q(110)\Q(\sqrt{-110}) Z/4Z\Z/4\Z not in database
44 Q(i,110)\Q(i, \sqrt{110}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.599695360000.6 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.4.599695360000.8 Z/8Z\Z/8\Z not in database
88 8.0.599695360000.29 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.