Properties

Label 194940.e
Number of curves $2$
Conductor $194940$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 194940.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
194940.e1 194940t1 \([0, 0, 0, -233928, -43705548]\) \(-5971968/25\) \(-5926426084627200\) \([]\) \(1551312\) \(1.8815\) \(\Gamma_0(N)\)-optimal
194940.e2 194940t2 \([0, 0, 0, 545832, -230380092]\) \(8429568/15625\) \(-33336146726028000000\) \([]\) \(4653936\) \(2.4308\)  

Rank

sage: E.rank()
 

The elliptic curves in class 194940.e have rank \(1\).

Complex multiplication

The elliptic curves in class 194940.e do not have complex multiplication.

Modular form 194940.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{5} - q^{7} - 6 q^{11} + q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.