Properties

Label 1950.c
Number of curves $2$
Conductor $1950$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 1950.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.c1 1950e2 \([1, 1, 0, -160, -200]\) \(3659383421/2056392\) \(257049000\) \([2]\) \(768\) \(0.30386\)  
1950.c2 1950e1 \([1, 1, 0, 40, 0]\) \(54439939/32448\) \(-4056000\) \([2]\) \(384\) \(-0.042709\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 1950.c have rank \(1\).

Complex multiplication

The elliptic curves in class 1950.c do not have complex multiplication.

Modular form 1950.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 2 q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} + q^{13} + 2 q^{14} + q^{16} - 2 q^{17} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.