Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1950.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1950.c1 | 1950e2 | \([1, 1, 0, -160, -200]\) | \(3659383421/2056392\) | \(257049000\) | \([2]\) | \(768\) | \(0.30386\) | |
1950.c2 | 1950e1 | \([1, 1, 0, 40, 0]\) | \(54439939/32448\) | \(-4056000\) | \([2]\) | \(384\) | \(-0.042709\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1950.c have rank \(1\).
Complex multiplication
The elliptic curves in class 1950.c do not have complex multiplication.Modular form 1950.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.