Properties

Label 196b1
Conductor 196196
Discriminant 9223681692236816
j-invariant 1792 1792
CM no
Rank 00
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2114x127y^2=x^3+x^2-114x-127 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z114xz2127z3y^2z=x^3+x^2z-114xz^2-127z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x39261x64827y^2=x^3-9261x-64827 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -114, -127])
 
gp: E = ellinit([0, 1, 0, -114, -127])
 
magma: E := EllipticCurve([0, 1, 0, -114, -127]);
 
oscar: E = elliptic_curve([0, 1, 0, -114, -127])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/3Z\Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(16,49)(16, 49)0033

Integral points

(16,±49)(16,\pm 49) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  196 196  = 22722^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  9223681692236816 = 24782^{4} \cdot 7^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1792 1792  = 2872^{8} \cdot 7
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.218614151986220396743990743680.21861415198622039674399074368
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3097083409039702431319884591-1.3097083409039702431319884591
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.89151927550664960.8915192755066496
Szpiro ratio: σm\sigma_{m} ≈ 4.893974302555794.89397430255579

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.56727497210487338288231040291.5672749721048733828823104029
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 9 9  = 33 3\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.56727497210487338288231040291.5672749721048733828823104029
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.567274972L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.5672751.0000009321.567274972\displaystyle 1.567274972 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.567275 \cdot 1.000000 \cdot 9}{3^2} \approx 1.567274972

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   196.2.a.b

q+q3+3q52q93q11+2q13+3q15+3q17q19+O(q20) q + q^{3} + 3 q^{5} - 2 q^{9} - 3 q^{11} + 2 q^{13} + 3 q^{15} + 3 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 42
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV additive -1 2 4 0
77 33 IVIV^{*} additive 1 2 8 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cn 4.4.0.2
33 3B.1.1 9.24.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[29, 36, 0, 1], [1, 0, 36, 1], [217, 36, 216, 37], [127, 36, 18, 145], [238, 243, 75, 205], [31, 6, 112, 103], [1, 36, 0, 1], [19, 36, 42, 199]]
 
GL(2,Integers(252)).subgroup(gens)
 
Gens := [[29, 36, 0, 1], [1, 0, 36, 1], [217, 36, 216, 37], [127, 36, 18, 145], [238, 243, 75, 205], [31, 6, 112, 103], [1, 36, 0, 1], [19, 36, 42, 199]];
 
sub<GL(2,Integers(252))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 252=22327 252 = 2^{2} \cdot 3^{2} \cdot 7 , index 864864, genus 2828, and generators

(293601),(10361),(2173621637),(1273618145),(23824375205),(316112103),(13601),(193642199)\left(\begin{array}{rr} 29 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 217 & 36 \\ 216 & 37 \end{array}\right),\left(\begin{array}{rr} 127 & 36 \\ 18 & 145 \end{array}\right),\left(\begin{array}{rr} 238 & 243 \\ 75 & 205 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 112 & 103 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 42 & 199 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[252])K:=\Q(E[252]) is a degree-870912870912 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/252Z)\GL_2(\Z/252\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 49=72 49 = 7^{2}
77 additive 2626 4=22 4 = 2^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 196b consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 196a1, its twist by 7-7.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 Q(ζ7)+\Q(\zeta_{7})^+ Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z 3.3.49.1-64.1-a7
66 6.0.1037232.1 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
99 9.3.203297472.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database
1212 12.4.1511207993344.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1818 18.0.1115906277282951168.1 Z/6ZZ/18Z\Z/6\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 7
Reduction type add ord add
λ\lambda-invariant(s) - 2 -
μ\mu-invariant(s) - 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.