sage:E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 1980.f
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
1980.f1 |
1980d4 |
[0,0,0,−2249967,1299009526] |
6749703004355978704/5671875 |
1058508000000 |
[6] |
13824 |
2.0429
|
|
1980.f2 |
1980d3 |
[0,0,0,−140592,20306401] |
−26348629355659264/24169921875 |
−281917968750000 |
[6] |
6912 |
1.6963
|
|
1980.f3 |
1980d2 |
[0,0,0,−28407,1696894] |
13584145739344/1195803675 |
223165665043200 |
[2] |
4608 |
1.4936
|
|
1980.f4 |
1980d1 |
[0,0,0,1968,123469] |
72268906496/606436875 |
−7073479710000 |
[2] |
2304 |
1.1470
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 1980.f have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1−T |
11 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−2T+7T2 |
1.7.ac
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+17T2 |
1.17.a
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+23T2 |
1.23.a
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 1980.f do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.