Properties

Label 1980.f
Number of curves 44
Conductor 19801980
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Elliptic curves in class 1980.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1980.f1 1980d4 [0,0,0,2249967,1299009526][0, 0, 0, -2249967, 1299009526] 6749703004355978704/56718756749703004355978704/5671875 10585080000001058508000000 [6][6] 1382413824 2.04292.0429  
1980.f2 1980d3 [0,0,0,140592,20306401][0, 0, 0, -140592, 20306401] 26348629355659264/24169921875-26348629355659264/24169921875 281917968750000-281917968750000 [6][6] 69126912 1.69631.6963  
1980.f3 1980d2 [0,0,0,28407,1696894][0, 0, 0, -28407, 1696894] 13584145739344/119580367513584145739344/1195803675 223165665043200223165665043200 [2][2] 46084608 1.49361.4936  
1980.f4 1980d1 [0,0,0,1968,123469][0, 0, 0, 1968, 123469] 72268906496/60643687572268906496/606436875 7073479710000-7073479710000 [2][2] 23042304 1.14701.1470 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1980.f have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
551T1 - T
11111+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1980.f do not have complex multiplication.

Modular form 1980.2.a.f

Copy content sage:E.q_eigenform(10)
 
q+q5+2q7q11+2q13+2q19+O(q20)q + q^{5} + 2 q^{7} - q^{11} + 2 q^{13} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.