sage:E = EllipticCurve("cn1")
E.isogeny_class()
Elliptic curves in class 198900.cn
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
198900.cn1 |
198900cc3 |
[0,0,0,−1114500,61131125] |
840033089536000/477272151837 |
86982849672293250000 |
[2] |
4976640 |
2.5159
|
|
198900.cn2 |
198900cc1 |
[0,0,0,−709500,−230023375] |
216727177216000/2738853 |
499155959250000 |
[2] |
1658880 |
1.9666
|
Γ0(N)-optimal |
198900.cn3 |
198900cc2 |
[0,0,0,−690375,−243009250] |
−12479332642000/1526829993 |
−4452236259588000000 |
[2] |
3317760 |
2.3132
|
|
198900.cn4 |
198900cc4 |
[0,0,0,4412625,486719750] |
3258571509326000/1920843121977 |
−5601178543684932000000 |
[2] |
9953280 |
2.8625
|
|
sage:E.rank()
The elliptic curves in class 198900.cn have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
13 | 1+T |
17 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1−4T+7T2 |
1.7.ae
|
11 |
1+11T2 |
1.11.a
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+23T2 |
1.23.a
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 198900.cn do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1362312662132631⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.