Properties

Label 198900.cn
Number of curves $4$
Conductor $198900$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cn1")
 
E.isogeny_class()
 

Elliptic curves in class 198900.cn

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198900.cn1 198900cc3 \([0, 0, 0, -1114500, 61131125]\) \(840033089536000/477272151837\) \(86982849672293250000\) \([2]\) \(4976640\) \(2.5159\)  
198900.cn2 198900cc1 \([0, 0, 0, -709500, -230023375]\) \(216727177216000/2738853\) \(499155959250000\) \([2]\) \(1658880\) \(1.9666\) \(\Gamma_0(N)\)-optimal
198900.cn3 198900cc2 \([0, 0, 0, -690375, -243009250]\) \(-12479332642000/1526829993\) \(-4452236259588000000\) \([2]\) \(3317760\) \(2.3132\)  
198900.cn4 198900cc4 \([0, 0, 0, 4412625, 486719750]\) \(3258571509326000/1920843121977\) \(-5601178543684932000000\) \([2]\) \(9953280\) \(2.8625\)  

Rank

sage: E.rank()
 

The elliptic curves in class 198900.cn have rank \(1\).

Complex multiplication

The elliptic curves in class 198900.cn do not have complex multiplication.

Modular form 198900.2.a.cn

sage: E.q_eigenform(10)
 
\(q + 4 q^{7} - q^{13} - q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.