Properties

Label 198900.cn
Number of curves 44
Conductor 198900198900
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Elliptic curves in class 198900.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198900.cn1 198900cc3 [0,0,0,1114500,61131125][0, 0, 0, -1114500, 61131125] 840033089536000/477272151837840033089536000/477272151837 8698284967229325000086982849672293250000 [2][2] 49766404976640 2.51592.5159  
198900.cn2 198900cc1 [0,0,0,709500,230023375][0, 0, 0, -709500, -230023375] 216727177216000/2738853216727177216000/2738853 499155959250000499155959250000 [2][2] 16588801658880 1.96661.9666 Γ0(N)\Gamma_0(N)-optimal
198900.cn3 198900cc2 [0,0,0,690375,243009250][0, 0, 0, -690375, -243009250] 12479332642000/1526829993-12479332642000/1526829993 4452236259588000000-4452236259588000000 [2][2] 33177603317760 2.31322.3132  
198900.cn4 198900cc4 [0,0,0,4412625,486719750][0, 0, 0, 4412625, 486719750] 3258571509326000/19208431219773258571509326000/1920843121977 5601178543684932000000-5601178543684932000000 [2][2] 99532809953280 2.86252.8625  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198900.cn have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
5511
13131+T1 + T
17171+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 14T+7T2 1 - 4 T + 7 T^{2} 1.7.ae
1111 1+11T2 1 + 11 T^{2} 1.11.a
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198900.cn do not have complex multiplication.

Modular form 198900.2.a.cn

Copy content sage:E.q_eigenform(10)
 
q+4q7q13q17+2q19+O(q20)q + 4 q^{7} - q^{13} - q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1362312662132631)\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.