Properties

Label 19a3
Conductor 1919
Discriminant 19-19
j-invariant 3276819 \frac{32768}{19}
CM no
Rank 00
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+y=x3+x2+xy^2+y=x^3+x^2+x Copy content Toggle raw display (homogenize, simplify)
y2z+yz2=x3+x2z+xz2y^2z+yz^2=x^3+x^2z+xz^2 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+864x432y^2=x^3+864x-432 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([0, 1, 1, 1, 0])
 
Copy content gp:E = ellinit([0, 1, 1, 1, 0])
 
Copy content magma:E := EllipticCurve([0, 1, 1, 1, 0]);
 
Copy content oscar:E = elliptic_curve([0, 1, 1, 1, 0])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/3Z\Z/{3}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(0,0)(0, 0)0033

Integral points

(0,0) \left(0, 0\right) , (0,1) \left(0, -1\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  19 19  = 1919
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  19-19 = 119-1 \cdot 19
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  3276819 \frac{32768}{19}  = 2151912^{15} \cdot 19^{-1}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.0651731316767918878751503533-1.0651731316767918878751503533
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0651731316767918878751503533-1.0651731316767918878751503533
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.31757060291384851.3175706029138485
Szpiro ratio: σm\sigma_{m} ≈ 3.53113370049957353.5311337004995735

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 4.07927920046493243220955268364.0792792004649324322095526836
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 1 1
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.453253244496103603578839187070.45325324449610360357883918707
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

0.453253244L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor214.0792791.0000001320.453253244\begin{aligned} 0.453253244 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 4.079279 \cdot 1.000000 \cdot 1}{3^2} \\ & \approx 0.453253244\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([0, 1, 1, 1, 0]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([0, 1, 1, 1, 0]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   19.2.a.a

q2q32q4+3q5q7+q9+3q11+4q124q136q15+4q163q17+q19+O(q20) q - 2 q^{3} - 2 q^{4} + 3 q^{5} - q^{7} + q^{9} + 3 q^{11} + 4 q^{12} - 4 q^{13} - 6 q^{15} + 4 q^{16} - 3 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 3
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There is only one prime pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
1919 11 I1I_{1} split multiplicative -1 1 1 1

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B.1.1 27.72.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[31, 36, 334, 421], [994, 9, 689, 790], [1, 54, 0, 1], [973, 54, 972, 55], [149, 681, 271, 448], [1, 0, 54, 1], [28, 27, 729, 703]] GL(2,Integers(1026)).subgroup(gens)
 
Copy content magma:Gens := [[31, 36, 334, 421], [994, 9, 689, 790], [1, 54, 0, 1], [973, 54, 972, 55], [149, 681, 271, 448], [1, 0, 54, 1], [28, 27, 729, 703]]; sub<GL(2,Integers(1026))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1026=23319 1026 = 2 \cdot 3^{3} \cdot 19 , index 12961296, genus 4343, and generators

(3136334421),(9949689790),(15401),(9735497255),(149681271448),(10541),(2827729703)\left(\begin{array}{rr} 31 & 36 \\ 334 & 421 \end{array}\right),\left(\begin{array}{rr} 994 & 9 \\ 689 & 790 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 973 & 54 \\ 972 & 55 \end{array}\right),\left(\begin{array}{rr} 149 & 681 \\ 271 & 448 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1026])K:=\Q(E[1026]) is a degree-179508960179508960 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1026Z)\GL_2(\Z/1026\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
1919 split multiplicative 2020 1 1

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 19a consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.76.1 Z/6Z\Z/6\Z not in database
33 3.3.361.1 Z/9Z\Z/9\Z 3.3.361.1-19.1-a3
66 6.0.109744.2 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.3518667.2 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
66 6.0.9747.1 Z/9Z\Z/9\Z not in database
99 9.3.57207791296.1 Z/18Z\Z/18\Z not in database
1212 12.2.937292452593664.2 Z/12Z\Z/12\Z not in database
1818 18.0.43564677551979246963.1 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database
1818 18.0.64417171850299425397321728.2 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1818 18.0.494296175215808851968.1 Z/18Z\Z/18\Z not in database
1818 18.0.62181896314367173832704.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive.

Iwasawa invariants

pp 2 3 19
Reduction type ss ord split
λ\lambda-invariant(s) 0,3 0 1
μ\mu-invariant(s) 0,0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.