Properties

Label 20070.ba
Number of curves 22
Conductor 2007020070
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ba1")
 
E.isogeny_class()
 

Elliptic curves in class 20070.ba

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20070.ba1 20070w1 [1,1,1,14528,661987][1, -1, 1, -14528, 661987] 17227485284283/45670400017227485284283/456704000 89893048320008989304832000 [2][2] 7459274592 1.26671.2667 Γ0(N)\Gamma_0(N)-optimal
20070.ba2 20070w2 [1,1,1,2752,2127331][1, -1, 1, 2752, 2127331] 117145509957/99458000000117145509957/99458000000 1957631814000000-1957631814000000 [2][2] 149184149184 1.61321.6132  

Rank

sage: E.rank()
 

The elliptic curves in class 20070.ba have rank 00.

Complex multiplication

The elliptic curves in class 20070.ba do not have complex multiplication.

Modular form 20070.2.a.ba

sage: E.q_eigenform(10)
 
q+q2+q4q5+4q7+q8q10+4q11+6q13+4q14+q166q17+O(q20)q + q^{2} + q^{4} - q^{5} + 4 q^{7} + q^{8} - q^{10} + 4 q^{11} + 6 q^{13} + 4 q^{14} + q^{16} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.