Properties

Label 20070.v
Number of curves 11
Conductor 2007020070
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Elliptic curves in class 20070.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20070.v1 20070v1 [1,1,1,45116243,118131988493][1, -1, 1, -45116243, -118131988493] 376147968271152925023018387/5647084311992320000000-376147968271152925023018387/5647084311992320000000 152471276423792640000000-152471276423792640000000 [][] 29512002951200 3.25173.2517 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 20070.v1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
3311
551+T1 + T
2232231+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1313 1+4T+13T2 1 + 4 T + 13 T^{2} 1.13.e
1717 1T+17T2 1 - T + 17 T^{2} 1.17.ab
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+5T+23T2 1 + 5 T + 23 T^{2} 1.23.f
2929 1+9T+29T2 1 + 9 T + 29 T^{2} 1.29.j
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20070.v do not have complex multiplication.

Modular form 20070.2.a.v

Copy content sage:E.q_eigenform(10)
 
q+q2+q4q53q7+q8q10q114q133q14+q16+q174q19+O(q20)q + q^{2} + q^{4} - q^{5} - 3 q^{7} + q^{8} - q^{10} - q^{11} - 4 q^{13} - 3 q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display