Properties

Label 20070bh
Number of curves 11
Conductor 2007020070
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Elliptic curves in class 20070bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20070.bc1 20070bh1 [1,1,1,13,101][1, -1, 1, 13, 101] 357911/6690357911/6690 4877010-4877010 [][] 35203520 0.036239-0.036239 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 20070bh1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
3311
551T1 - T
2232231+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1T+7T2 1 - T + 7 T^{2} 1.7.ab
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 13T+17T2 1 - 3 T + 17 T^{2} 1.17.ad
1919 1+5T+19T2 1 + 5 T + 19 T^{2} 1.19.f
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+5T+29T2 1 + 5 T + 29 T^{2} 1.29.f
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20070bh do not have complex multiplication.

Modular form 20070.2.a.bh

Copy content sage:E.q_eigenform(10)
 
q+q2+q4+q5q7+q8+q104q11+6q13q14+q16q17+q19+O(q20)q + q^{2} + q^{4} + q^{5} - q^{7} + q^{8} + q^{10} - 4 q^{11} + 6 q^{13} - q^{14} + q^{16} - q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display