E = EllipticCurve("cv1")
E.isogeny_class()
Elliptic curves in class 201840.cv
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
201840.cv1 |
201840a3 |
[0,1,0,−3465200,2445222420] |
1888690601881/31827645 |
77544757241893048320 |
[2] |
10321920 |
2.6144
|
|
201840.cv2 |
201840a2 |
[0,1,0,−437600,−53153100] |
3803721481/1703025 |
4149243847663718400 |
[2,2] |
5160960 |
2.2679
|
|
201840.cv3 |
201840a1 |
[0,1,0,−370320,−86820012] |
2305199161/1305 |
3179497201274880 |
[2] |
2580480 |
1.9213
|
Γ0(N)-optimal |
201840.cv4 |
201840a4 |
[0,1,0,1513520,−395769772] |
157376536199/118918125 |
−289731682466173440000 |
[4] |
10321920 |
2.6144
|
|
The elliptic curves in class 201840.cv have
rank 0.
The elliptic curves in class 201840.cv do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.