Properties

Label 202800hw
Number of curves $4$
Conductor $202800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("hw1")
 
E.isogeny_class()
 

Elliptic curves in class 202800hw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202800.ht3 202800hw1 \([0, 1, 0, -30983, -1220712]\) \(2725888/1053\) \(1270657469250000\) \([2]\) \(688128\) \(1.5972\) \(\Gamma_0(N)\)-optimal
202800.ht2 202800hw2 \([0, 1, 0, -221108, 39085788]\) \(61918288/1521\) \(29366305956000000\) \([2, 2]\) \(1376256\) \(1.9437\)  
202800.ht1 202800hw3 \([0, 1, 0, -3516608, 2537074788]\) \(62275269892/39\) \(3011928816000000\) \([2]\) \(2752512\) \(2.2903\)  
202800.ht4 202800hw4 \([0, 1, 0, 32392, 123754788]\) \(48668/85683\) \(-6617207608752000000\) \([2]\) \(2752512\) \(2.2903\)  

Rank

sage: E.rank()
 

The elliptic curves in class 202800hw have rank \(0\).

Complex multiplication

The elliptic curves in class 202800hw do not have complex multiplication.

Modular form 202800.2.a.hw

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.