Show commands:
SageMath
E = EllipticCurve("jy1")
E.isogeny_class()
Elliptic curves in class 202800jy
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
202800.dk4 | 202800jy1 | \([0, -1, 0, 353492, -57219488]\) | \(253012016/219375\) | \(-4235524897500000000\) | \([2]\) | \(3096576\) | \(2.2617\) | \(\Gamma_0(N)\)-optimal |
202800.dk3 | 202800jy2 | \([0, -1, 0, -1759008, -505069488]\) | \(7793764996/3080025\) | \(237867078243600000000\) | \([2, 2]\) | \(6193152\) | \(2.6083\) | |
202800.dk2 | 202800jy3 | \([0, -1, 0, -12744008, 17158810512]\) | \(1481943889298/34543665\) | \(5335541539679520000000\) | \([2]\) | \(12386304\) | \(2.9548\) | |
202800.dk1 | 202800jy4 | \([0, -1, 0, -24574008, -46865149488]\) | \(10625310339698/3855735\) | \(595548684787680000000\) | \([2]\) | \(12386304\) | \(2.9548\) |
Rank
sage: E.rank()
The elliptic curves in class 202800jy have rank \(1\).
Complex multiplication
The elliptic curves in class 202800jy do not have complex multiplication.Modular form 202800.2.a.jy
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.