Properties

Label 20280s
Number of curves 44
Conductor 2028020280
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Elliptic curves in class 20280s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20280.n4 20280s1 [0,1,0,14140,452100][0, -1, 0, 14140, 452100] 253012016/219375253012016/219375 271073593440000-271073593440000 [4][4] 6451264512 1.45701.4570 Γ0(N)\Gamma_0(N)-optimal
20280.n3 20280s2 [0,1,0,70360,4068700][0, -1, 0, -70360, 4068700] 7793764996/30800257793764996/3080025 1522349300759040015223493007590400 [2,2][2, 2] 129024129024 1.80361.8036  
20280.n2 20280s3 [0,1,0,509760,137066580][0, -1, 0, -509760, -137066580] 1481943889298/345436651481943889298/34543665 341474658539489280341474658539489280 [2][2] 258048258048 2.15012.1501  
20280.n1 20280s4 [0,1,0,982960,375314380][0, -1, 0, -982960, 375314380] 10625310339698/385573510625310339698/3855735 3811511582641152038115115826411520 [2][2] 258048258048 2.15012.1501  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20280s have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331T1 - T
551+T1 + T
131311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 1+11T2 1 + 11 T^{2} 1.11.a
1717 12T+17T2 1 - 2 T + 17 T^{2} 1.17.ac
1919 1+19T2 1 + 19 T^{2} 1.19.a
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+2T+29T2 1 + 2 T + 29 T^{2} 1.29.c
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20280s do not have complex multiplication.

Modular form 20280.2.a.s

Copy content sage:E.q_eigenform(10)
 
qq3+q5+q94q11q152q17+4q19+O(q20)q - q^{3} + q^{5} + q^{9} - 4 q^{11} - q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.