sage:E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 20280s
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
20280.n4 |
20280s1 |
[0,−1,0,14140,452100] |
253012016/219375 |
−271073593440000 |
[4] |
64512 |
1.4570
|
Γ0(N)-optimal |
20280.n3 |
20280s2 |
[0,−1,0,−70360,4068700] |
7793764996/3080025 |
15223493007590400 |
[2,2] |
129024 |
1.8036
|
|
20280.n2 |
20280s3 |
[0,−1,0,−509760,−137066580] |
1481943889298/34543665 |
341474658539489280 |
[2] |
258048 |
2.1501
|
|
20280.n1 |
20280s4 |
[0,−1,0,−982960,375314380] |
10625310339698/3855735 |
38115115826411520 |
[2] |
258048 |
2.1501
|
|
sage:E.rank()
The elliptic curves in class 20280s have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1−T |
5 | 1+T |
13 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+11T2 |
1.11.a
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+19T2 |
1.19.a
|
23 |
1+23T2 |
1.23.a
|
29 |
1+2T+29T2 |
1.29.c
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 20280s do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.