Show commands:
SageMath
E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 20280s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
20280.n4 | 20280s1 | \([0, -1, 0, 14140, 452100]\) | \(253012016/219375\) | \(-271073593440000\) | \([4]\) | \(64512\) | \(1.4570\) | \(\Gamma_0(N)\)-optimal |
20280.n3 | 20280s2 | \([0, -1, 0, -70360, 4068700]\) | \(7793764996/3080025\) | \(15223493007590400\) | \([2, 2]\) | \(129024\) | \(1.8036\) | |
20280.n2 | 20280s3 | \([0, -1, 0, -509760, -137066580]\) | \(1481943889298/34543665\) | \(341474658539489280\) | \([2]\) | \(258048\) | \(2.1501\) | |
20280.n1 | 20280s4 | \([0, -1, 0, -982960, 375314380]\) | \(10625310339698/3855735\) | \(38115115826411520\) | \([2]\) | \(258048\) | \(2.1501\) |
Rank
sage: E.rank()
The elliptic curves in class 20280s have rank \(1\).
Complex multiplication
The elliptic curves in class 20280s do not have complex multiplication.Modular form 20280.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.