Properties

Label 2040.i
Number of curves $1$
Conductor $2040$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 2040.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2040.i1 2040n1 \([0, 1, 0, -516, 4869]\) \(-951468070144/135517455\) \(-2168279280\) \([]\) \(1248\) \(0.52236\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2040.i1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2040.i do not have complex multiplication.

Modular form 2040.2.a.i

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 3 q^{7} + q^{9} + 5 q^{11} - 2 q^{13} - q^{15} - q^{17} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display