Properties

Label 2040.n
Number of curves 22
Conductor 20402040
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 2040.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2040.n1 2040o2 [0,1,0,720,7200][0, 1, 0, -720, 7200] 20183398562/382520183398562/3825 78336007833600 [2][2] 640640 0.324050.32405  
2040.n2 2040o1 [0,1,0,40,128][0, 1, 0, -40, 128] 7086244/4335-7086244/4335 4439040-4439040 [2][2] 320320 0.022526-0.022526 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2040.n have rank 00.

Complex multiplication

The elliptic curves in class 2040.n do not have complex multiplication.

Modular form 2040.2.a.n

sage: E.q_eigenform(10)
 
q+q3+q52q7+q9+q15q17+4q19+O(q20)q + q^{3} + q^{5} - 2 q^{7} + q^{9} + q^{15} - q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.