Properties

Label 2040.n
Number of curves $2$
Conductor $2040$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 2040.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2040.n1 2040o2 \([0, 1, 0, -720, 7200]\) \(20183398562/3825\) \(7833600\) \([2]\) \(640\) \(0.32405\)  
2040.n2 2040o1 \([0, 1, 0, -40, 128]\) \(-7086244/4335\) \(-4439040\) \([2]\) \(320\) \(-0.022526\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2040.n have rank \(0\).

Complex multiplication

The elliptic curves in class 2040.n do not have complex multiplication.

Modular form 2040.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{7} + q^{9} + q^{15} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.