Properties

Label 20400.c
Number of curves 22
Conductor 2040020400
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 20400.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20400.c1 20400o1 [0,1,0,203583,35284338][0, -1, 0, -203583, -35284338] 29860725364736/358157729860725364736/3581577 111924281250000111924281250000 [2][2] 149760149760 1.72051.7205 Γ0(N)\Gamma_0(N)-optimal
20400.c2 20400o2 [0,1,0,186708,41393088][0, -1, 0, -186708, -41393088] 1439609866256/651714363-1439609866256/651714363 325857181500000000-325857181500000000 [2][2] 299520299520 2.06712.0671  

Rank

sage: E.rank()
 

The elliptic curves in class 20400.c have rank 00.

Complex multiplication

The elliptic curves in class 20400.c do not have complex multiplication.

Modular form 20400.2.a.c

sage: E.q_eigenform(10)
 
qq34q7+q92q114q13q17+4q19+O(q20)q - q^{3} - 4 q^{7} + q^{9} - 2 q^{11} - 4 q^{13} - q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.