Properties

Label 20400.c
Number of curves $2$
Conductor $20400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 20400.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20400.c1 20400o1 \([0, -1, 0, -203583, -35284338]\) \(29860725364736/3581577\) \(111924281250000\) \([2]\) \(149760\) \(1.7205\) \(\Gamma_0(N)\)-optimal
20400.c2 20400o2 \([0, -1, 0, -186708, -41393088]\) \(-1439609866256/651714363\) \(-325857181500000000\) \([2]\) \(299520\) \(2.0671\)  

Rank

sage: E.rank()
 

The elliptic curves in class 20400.c have rank \(0\).

Complex multiplication

The elliptic curves in class 20400.c do not have complex multiplication.

Modular form 20400.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{7} + q^{9} - 2 q^{11} - 4 q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.