Properties

Label 206310bg
Number of curves 66
Conductor 206310206310
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bg1") E.isogeny_class()
 

Elliptic curves in class 206310bg

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206310.bi6 206310bg1 [1,1,1,7924,105427][1, 1, 1, 7924, -105427] 371694959/249600371694959/249600 36949757894400-36949757894400 [2][2] 720896720896 1.29211.2921 Γ0(N)\Gamma_0(N)-optimal
206310.bi5 206310bg2 [1,1,1,34396,917971][1, 1, 1, -34396, -917971] 30400540561/1521000030400540561/15210000 22516258716900002251625871690000 [2,2][2, 2] 14417921441792 1.63871.6387  
206310.bi3 206310bg3 [1,1,1,298896,62138829][1, 1, 1, -298896, 62138829] 19948814692561/23134410019948814692561/231344100 3424722950840490034247229508404900 [2,2][2, 2] 28835842883584 1.98521.9852  
206310.bi2 206310bg4 [1,1,1,447016,115131187][1, 1, 1, -447016, -115131187] 66730743078481/6093750066730743078481/60937500 90209369859375009020936985937500 [2][2] 28835842883584 1.98521.9852  
206310.bi1 206310bg5 [1,1,1,4768946,4006510949][1, 1, 1, -4768946, 4006510949] 81025909800741361/1108809081025909800741361/11088090 16414352604620101641435260462010 [2][2] 57671685767168 2.33182.3318  
206310.bi4 206310bg6 [1,1,1,60846,158691909][1, 1, 1, -60846, 158691909] 168288035761/73415764890-168288035761/73415764890 10868168022106137210-10868168022106137210 [2][2] 57671685767168 2.33182.3318  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 206310bg have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
331+T1 + T
551+T1 + T
13131T1 - T
232311
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1111 1+5T+11T2 1 + 5 T + 11 T^{2} 1.11.f
1717 14T+17T2 1 - 4 T + 17 T^{2} 1.17.ae
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2929 1+T+29T2 1 + T + 29 T^{2} 1.29.b
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 206310bg do not have complex multiplication.

Modular form 206310.2.a.bg

Copy content sage:E.q_eigenform(10)
 
q+q2q3+q4q5q6+q8+q9q104q11q12+q13+q15+q16+6q17+q184q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} + q^{13} + q^{15} + q^{16} + 6 q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421422424188842814842841)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.