E = EllipticCurve("ce1")
E.isogeny_class()
Elliptic curves in class 206310ce
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
206310.n3 |
206310ce1 |
[1,1,0,−7152,−228816] |
273359449/9360 |
1385615921040 |
[2] |
394240 |
1.1016
|
Γ0(N)-optimal |
206310.n2 |
206310ce2 |
[1,1,0,−17732,590076] |
4165509529/1368900 |
202646328452100 |
[2,2] |
788480 |
1.4482
|
|
206310.n1 |
206310ce3 |
[1,1,0,−255782,49675986] |
12501706118329/2570490 |
380524772315610 |
[2] |
1576960 |
1.7948
|
|
206310.n4 |
206310ce4 |
[1,1,0,51038,4124854] |
99317171591/106616250 |
−15783031350596250 |
[2] |
1576960 |
1.7948
|
|
The elliptic curves in class 206310ce have
rank 1.
The elliptic curves in class 206310ce do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.