Properties

Label 206310ce
Number of curves 44
Conductor 206310206310
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ce1")
 
E.isogeny_class()
 

Elliptic curves in class 206310ce

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206310.n3 206310ce1 [1,1,0,7152,228816][1, 1, 0, -7152, -228816] 273359449/9360273359449/9360 13856159210401385615921040 [2][2] 394240394240 1.10161.1016 Γ0(N)\Gamma_0(N)-optimal
206310.n2 206310ce2 [1,1,0,17732,590076][1, 1, 0, -17732, 590076] 4165509529/13689004165509529/1368900 202646328452100202646328452100 [2,2][2, 2] 788480788480 1.44821.4482  
206310.n1 206310ce3 [1,1,0,255782,49675986][1, 1, 0, -255782, 49675986] 12501706118329/257049012501706118329/2570490 380524772315610380524772315610 [2][2] 15769601576960 1.79481.7948  
206310.n4 206310ce4 [1,1,0,51038,4124854][1, 1, 0, 51038, 4124854] 99317171591/10661625099317171591/106616250 15783031350596250-15783031350596250 [2][2] 15769601576960 1.79481.7948  

Rank

sage: E.rank()
 

The elliptic curves in class 206310ce have rank 11.

Complex multiplication

The elliptic curves in class 206310ce do not have complex multiplication.

Modular form 206310.2.a.ce

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6q8+q9q10q12q13q15+q16+6q17q18+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{8} + q^{9} - q^{10} - q^{12} - q^{13} - q^{15} + q^{16} + 6 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.